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ABSTRACT 

Heterologous expression systems such as COS-7 cells have demonstrated the profound effects of 

KCNAB1-3 or Kvβ1-3 proteins on voltage gated potassium channels (Kv) channels. Indeed, in 

the presence of these β-subunits transiently expressed Kv channels are often modulated in 

multiple ways. Kv channel membrane expression is often increased in the presence of β-subunits. 

In addition, non-inactivating Kv currents suddenly become fast-inactivating and fast-inactivating 

channels become even faster. While much research has demonstrated the profound effects the β-

subunits in particular the Kvβ1 subunit have on transiently expressed Kv currents little to date is 

known of the physiological role it may play. One study demonstrated that by “knocking out” 

Kvβ1 cardiomyocyte current changes were noted including a decrease in the Ito,f current. While 

this novel finding demonstrated a key cardiac physiological role of the Kvβ1 subunit it left many 

unanswered questions as to determine the cardiovascular regulation the Kvβ1 subunit provides. 

Indeed, cardiac arrhythmias and other electrical abnormalities within the heart such as long QT 

present patients with many unfortunate unknowns. Many of these incidences occur often 

abruptly with cardiac electrical abnormalities. Genetic research has begun to shine light on key 

cardiovascular genes in particular those coding for ion channels and auxiliary subunits or β-

subunits. Kv channels and their β-subunits have gained particular notoriety in their key 

responsibility in restoring the resting membrane potential known as the repolarization phase. 

Indeed genetic manipulation and physiological examination of Kv channels and recently their β-

subunits has demonstrated profound physiological results including prolonged QT durations 

within mice altered functional activity during physiological cycles such as estrus. While initial 
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findings of Kvβ1 have demonstrated profound cellular and cardiomyocyte current alterations 

much still remains unknown. Therefore, this work hypothesizes that the Kvβ1 subunit provides a 

profound cardiovascular role in regulation and redox sensing at the physiological and 

pathophysiological level in both males and females. This work identifies a sex-based difference 

in cardiovascular regulation by Kvβ1 as well as demonstrated a profound redox sensing ability 

during altered metabolic states seen in pathophysiological conditions.
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CHAPTER ONE: 

Introduction 

Significance 

Many cardiovascular diseases including cardiac arrhythmias can often manifest from 

abnormal electrical activity within the heart, however a large portion of how these abnormalities 

arise often remain unknown. Atrial fibrillation one of the more common types of heart 

arrhythmias affects an estimated 3-6 million people within the United States (CDC). Both atrial 

and ventricular arrhythmias can arise from mutations in numerous genes from those that code 

specific membrane ion channels such as sodium or potassium to smaller proteins such as channel 

auxiliary subunits. While sodium channels as well as select potassium channels have been 

investigated for many years leading to the discovery of mutations in the SCN5A channel and the 

development of Brugada syndrome, less is known about mutations and alterations within the 

potassium channels and their auxiliary subunits (55, 160). Cardiac potassium channels play a key 

role in the repolarization phase of cardiac action potentials and are often the key targets affected 

in action potential prolongation as well as QT prolongation seen in ECG waveforms. Because of 

the recent advances in genetic manipulation many “knockout” mice have been created in the area 

of cardiac K
+
 channels.  Mutations conducted on the Kv4.2 (murine) channel the molecular 

determinate of the cardiac Ito’f current demonstrates significant consequences including QT 

prolongation, cardiac hypertrophy and, heart failure (5, 95, 119). Similar deleterious effects have 

been noted in mutations in other Kv channels such as Kv2.1, 1.5 and, 1.4 demonstrating 

alterations including QT prolongation but demonstrate little to no effect on cardiac remodeling 
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(93, 97, 158). Recently modulation of the Kv channel auxiliary subunits have demonstrated 

profound effects sometimes even greater than mutations and or deletions of the potassium 

channel that they modulate in murine models. The Kv channel chaperone protein KCHIP2 for 

example when knocked out was demonstrated to induce QT prolongation, as well as incite 

arrhythmic events within the mice (59, 136). Cardiac hypertrophy in rats was blunted when 

overexpression of KCHIP2 by adenovirus was given rescuing the prolonged action potential as 

well as the Kv4.2 channel expression (100, 101). Similar effects were noted in other modulator 

proteins including DPPX proteins as well a MINK and MiRP2 (78, 92, 144, 152). The auxiliary 

subunits or otherwise known β subunits Kvβ (Shaker potassium channel subunit) include Kvβ1 

(with splice variants Kvβ1.1, Kvβ1.2, and Kvβ1.3) and Kvβ2 are of particular interest to the 

cardiovascular system as research has demonstrated they are highly expressed within the heart 

and vascular system including the aorta in addition to sympathoadrenal and autonomic system (2, 

26, 28, 31, 42, 122). While much in vitro work has demonstrated the profound effect the Kvβ 

subunit can have on Kv channel activity little is known of the in vivo effects of the Kvβ subunit 

alterations. Indeed, Kvβ1 subunits have been demonstrated to modulate key Kv channels 

including Kv1.5, 1.4 and most recently 4.2 all of which play a vital role in the repolarization of 

cardiac action potentials (30, 148). A 2005 report of Kvβ1 knockout mice demonstrated a 

significant decrease in Ito’f current as well as the Ito’s current (2). More recently genetic testing has 

begun to demonstrate that Kvβ’s absence is present in numerous disease conditions including 

schizophrenia, high blood pressure, and sudden cardiac death (4, 14, 62, 80, 161). Therefore a 

greater understanding of the cardiovascular physiological impact of Kvβ1 is needed.  
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Background  

 Voltage-Gated Potassium Channels  

The voltage-gated potassium channels play a significant role throughout the body from 

maintaining the resting membrane potential in excitable cells, to the modulation of the waveform 

and frequency of the action potential (53, 54). Kv channels in non-excitable cells can also 

regulate cell volume, proliferation, and apoptosis (48, 53, 133). Because of this Kv channel 

activity and disruption has been associated with cardiac arrhythmias, pulmonary hypertension 

and, epilepsy (9, 35, 84, 143). Within the human genome, forty different genes encoding Kv 

channels was presented and subdivided into twelve sub-families (Kv1-Kv12) (41). Mammalian 

Kv channels are tetramers made up of 4 α-subunits composed of six α-helical transmembrane 

domains (S1-S6) with a cytosolic N and C-termini along with a membrane-reentering P loop 

between S5 and S6 (143). The S5-P-S6 segments make up the ion conducting pore, while S1-S4 

segments are responsible for the voltage-sensing and gating. The Kv channel operates by sensing 

the voltage changes or membrane potential occurring within the cell and activates/inactivates or 

closes dependent upon the individual channels properties. Many Kv channels open (activate) at 

different voltages, become inactivate followed by closed as the voltage or membrane potential 

changes. This synchrony of opening, inactivating and, closing often works in a harmonious 

fashion in order to properly propagate action potentials.  

Action potential prolongation is a result of concerted distortion of channel itself or along 

with its regulatory subunits.  The activation or open state of the Kv channel is caused by the S4 

segment known as the voltage sensor, this segment is able to sense the cellular voltage (potential) 

and thus modify the channel pore by conformational change. The kinetics of the activation of the 

Kv channel can be measured and is often represented as V1/2 of activation which describes the 
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membrane voltage (potential) at which half of the channel(s) are open. This is often a critical 

measurement when analyzing pharmaceutical kinetics such a drug binding and interaction which 

can affect channel activation. If V1/2 of activation is shifted towards the left a more negative 

potential or mV, in the Kv channel to a more negative potential then activation has increased or 

accelerated and hyperpolarization has occurred. If the V1/2 of activation is shifted towards the 

right, in the Kv channel to a more positive potential than activation has decreased and 

hypopolarization has occurred.  

The Kv channels have two distinct forms of inactivation which include the N-type and C-type. 

The N-type inactivation is dependent upon the N-terminus region (the first 20 amino acids) 

commonly known as the “ball” in which the “ball” occludes the channel pore by interacting with 

the S4-S5 linker region of the Kv channel blocking the channel pore (115). Fast inactivating 

channels such as Kv4.2 and 4.3 for example rely on the N-type inactivation which often occurs 

in milliseconds to tens of milliseconds. The C-type inactivation does not involve a “tethered 

ball” type on the C-terminus but the closure of the extracellular mouth of the pore (115). Similar 

to activation, inactivation can also be an important measurement in determining pharmaceutical 

kinetics as well as auxiliary subunit (such as Kvβ1) alterations. If the V1/2 of inactivation is 

shifted towards the left, in the Kv channel to a more negative potential then inactivation has 

increased while a shift to the right would signal a possible rate in reduction in inactivation.  

 Kvβ Subunits  

The initial identification of the Kvβ subunits came from the purification of Kv channels 

based on their binding affinity with α-dendrotoxin in bovine brain tissue, which demonstrated a 

tight association between Kvα and Kvβ subunits (105, 116). One of the first reports on the 

function of the Kvβ1 subunit came in a Nature publication in 1994 demonstrating the ability of 
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rat Kvβ1 to associate with A-type Kv channels and impart greater inactivation (117).  Further 

human characterization demonstrated that Kvβ3 equivalent in sequence to Kvβ1 (mouse) was 

present in the left atrium as well as the left ventricle (26). More recent reports have demonstrated 

that the Kvβ subunits are abundantly expressed throughout the body including the brain, heart, 

and the vascular system including the aorta as well as the autonomic system (16, 28, 37, 42, 

122).  

 The sequences of the Kvβ subunits were identified and found to share significant 

similarities with an extended protein superfamily, the oxidoreductases particularly the aldo-keto 

reductases (AKR) (40, 81). The AKR’s catalyze the reduction or the oxidation of a broad range 

of carbonyl substrates including aldehydes, ketones, and steroids (107, 112). The Kvβ subunits 

were found most closely related to the AKR7 the aflatoxin reductase and AKR5 the morphine 

dehydrogenase therefore the Kvβ subunits were assigned to the AKR6 family (49). This 

sequence analysis was subsequently followed with the crystal structure of Kvβ2 demonstrating 

an NADP
+
 molecule bound to the structure even in the harsh crystallography process (40). 

Similar to the oxidoreducatases, the Kvβ subunit contains multiple active sites which are 

composed of a substrate binding sites, NADP(H) cofactor binding pockets, as well as catalytic 

residues for hydride transfer (40, 112).  

 The Kvβ subunits is encoded by three separate genes for Kvβ1, Kvβ2, and Kvβ3 of which 

Kvβ1 and 2 undergo alternative splicing to give rise to Kvβ1.1, 1.2, 1.3 and Kvβ2.1 and 2.2 (53), 

whereas less is known in regards to Kvβ3 and its gene regulation, some reports suggest the 

existence of Kvβ4 in which the sequence overlaps with Kvβ3 except the breakaway region of 

Kvβ3 c-terminus (29, 44). Genomic DNA sequence analysis and genome mapping demonstrated 

that Kvβ1 resides on the telomere of chromosome arm 3q to a band 3q25 (50, 65). Initial 
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research demonstrated that Kvβ1 presented with 17 exons in which exons 2a, 2b, and 2c 

correspond with Kvβ1.1, 1.2, 1.3 isoforms (64). While the splice variants have many conserved 

domains the NH2-terminal region varies which contains the N-type inactivation domain this 

accounts for the altered molecular weight as well as how the splice variants modulate Kv 

channels differently (112). Indeed, initial research has demonstrated that different isoforms have 

confirmed unique gating and sensing abilities to multiple Kv channels. Wang et al demonstrated 

that hKvβ1.2 and 1.3 bound to multiple Kv channels because of the identical C-terminal region 

however, gating and sensing abilities differed between the two likely due to the difference in N-

terminal sequences. The hKvβ1.2 demonstrated as a more potent modulator and was the only 

subunit to confer redox sensing abilities in the presence of H2O2 which abolished the hKvβ1.2 

inactivation (146). While splice variants demonstrate significantly similar traits so to do Kvβ1 

and Kvβ2 sharing roughly 85% amino acid identity within their core region corresponding to 

their aldo-keto reductases background. The N-terminal regions are significantly different, Kvβ2 

N-terminal region being almost non-existent which helps to explain why the subunit offers less 

in inactivation modulation in many Kv channel interactions (112, 117).  

 While initial structure findings found that NADP(H) molecules preferentially bind to the 

Kvβ subunit, little was demonstrated on how this binding alters Kv channel kinetics. Indeed, 

many of these initial findings demonstrated the unique Kv channel kinetics in the presence of 

Kvβ1 however often lacked any information on the pyridine nucleotide status in each model. 

Campomanes et al demonstrated that when Kvβ1.1 cofactor sites (NADP(H) and NADH) are 

mutated Kv1.2 surface expression is significantly decreased (11). The identification and 

importance of pyridine nucleotide binding to Kvβ subunits and modulation of Kv channel 

activity has only been identified within the past 10 years. Indeed, Tipparaju et al demonstrated 
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that Kv1.5 with Kvβ1.3 was modulated differently in the presence of varying concentrations of 

pyridine nucleotides; where reduced nucleotides NADH and NADPH when added demonstrated 

increased inactivation and oxidized nucleotides such as NAD and NADP presented with reduced 

inactivation (139). Further publications would highlight the importance of the Kvβ subunit in 

conferring pyridine nucleotide Kv channel alterations providing Kv channels with a “redox” 

sensor (99, 137, 138). 

 The Kvβ subunits when purified demonstrated greater affinity for pyridine nucleotide 

binding in vitro such as NADP(H) compared with NAD(H) interestingly in vivo NAD(H) levels 

are almost 2-7 fold higher compared with NADP(H). Therefore this may allow Kvβ to sense and 

respond to a wide range of metabolic alterations that change the overall pyridine nucleotide 

environment within a cell. Many cardiovascular diseases including cardiac hypertrophy often 

demonstrate a significant increase in NADH and or accompanying decrease in NAD levels 

compared to normal cardiac tissue (111, 155). Indeed, during low-flow reperfusion of ischemic 

myocardium which led to persistent arrhythmias ectopic beats were often generated in areas 

demonstrating the highest spatial gradient for NADH (52). While low-flow ischemic injury and 

inducing cardiac hypertrophy have been utilized models of studying cardiovascular disease so 

too has the manipulation of lactate and pyruvate within the heart to alter NAD/NADH levels. 

Indeed, multiple papers have demonstrated that increasing lactate concentrations up to 10:1 

ratios of pyruvate not only significantly increase intracellular NADH levels but often mimic 

pathologic conditions observed within the heart and cardiomyocytes (71). This biochemical 

manipulation is currently one strategy being utilized in understanding human cardiovascular 

disease. 
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 Trafficking and Assembly of Kv Channels and the Kvβ Subunits 

The α-subunit, an integral membrane protein expresses tetrameric Kv channels and the 

auxiliary β-subunits found on the cytoplasmic side associate with the Kvα-subunits and can 

modulate Kv channel properties. The initial α-β interaction occurs within the endoplasmic 

reticulum in which the Kv-α and β subunit are packaged together and shipped from the Golgi 

apparatus to be delivered to the membrane (87). In the absence of the Kvβ subunit the Kv 

channel was still efficiently transferred to the Golgi apparatus. While seemingly unnecessary for 

transfer to the Golgi apparatus, Kvβ1 does demonstrate an effect on current kinetics as well as 

altering Kv channel expression (1, 11, 156). Indeed, in vitro studies demonstrated that co-

expression of Kvβ subunits with Kvα channels significantly increased surface expression (11, 

156). However, current in vivo work has shown little to no change in Kv channel expression in 

Kvβ knockout mice (2). While seemingly unaltered during the Golgi apparatus the Kvβ’s may 

affect Kv channel expression by their interaction with the cytoskeleton as well as membrane 

bound proteins. The N-terminal domain of Kvβ1 and to some extent Kvβ2 was determined to 

have a cytoskeleton binding domain interacting with the actin cytoskeleton and in particular the 

F-actin and α-actinin (88). Kvβ2 subunit was recently demonstrated to bind with 

ProSAP2/Shank3 which are components of signaling cascades at the postsynaptic membrane and 

actin-based cytoskeleton of the dendritic spine (114). Kvβ1 and 2 were demonstrated to bind 

with Kv4.3 as well as increase its current density (pA/pF) (156). The Kv4.3 (Kv4.2 in mice) 

plays a profound effect on the cardiac action potential and make up one of the key repolarizing 

currents.  

The Kvβ subunit binds with the α-unit in a one-to-one ratio per meric structure, thus there 

are four Kvβ subunits bound to one Kv channel (153). In 2005 the Kvβ2 was crystalized with the 
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Kv1.2 channel and for the first time demonstrated the unique interaction between the β-subunit 

and the α-subunit. The association was centered on a small area of the tetramerization domain in 

the NH2 terminus of the α-subunit (74). The general binding of the α-β occurs on the N-terminus 

of the Kv channel the NAB region (N-terminal A and B box), in particular what is known as the 

T1 domain (159). The interaction occurs by a contact loop between the Kvα and Kvβ subunit 

allowing for the docking and surface engagement of only a few amino acids from both the Kvα 

and Kvβ subunit (112). Yu et al demonstrated that not only was the N-terminal region of the Kvα 

and core region of the Kvβ subunit responsible for N-type inactivation but in addition the 

inactivation gate of Kvβ1 with the compatible receptor on Kvα units (159).  The lack of multiple 

amino acid binding interactions allows both the Kvα and Kvβ subunits to bind with other 

proteins along the membrane as well as cytoplasmic proteins. The binding of the N-terminus 

allows the Kvβ subunit to have direct binding access with the inactivation domain of the α-

channel itself thus enhancing or hindering Kv channel gating properties.  

The Kvβ1 subunit presents with a long N-terminus “tail” and with this actually binds and 

plugs the pore of the Kv channel thus acting to inactivate the channel or in specific α-channels 

accelerate inactivation. The same “tail” also interacts with the Kv channel N-terminus and cause 

self-inactivation to occur at a much faster rate compared in the absence of the Kvβ1 subunit (75, 

98, 99). Kvβ subunits are not the only subunits bound at one time; there may also be other 

subunits such as KCHIP2 or even other β subunits bound to the Kv channel. Kuryshev et al 

demonstrated that Kv channels (rat Kv4.3, 1.4, 2.1, 1.5) bound not only Kvβ1 and 2 but also 

simultaneously KChAP protein which had significant alterations in the current amplitude (60). 

The Kvβ1 subunit when bound to many non-inactivation Kv channels actually converts them to 

A-type or fast inactivation currents (61, 64, 98, 117). In addition, when Kvβ1 is bound to A-type 
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or fast inactivating Kv channels they tend to foster faster inactivation rates evident by 

hyperpolarizing shifts in V1/2 of inactivation rates (3, 75). 

Kvβ1 and β2 demonstrate multiple alterations to many Kv channels; however these 

alterations are often in response to the Kvβ subunits unique functional attributes such as the 

binding of pyridine nucleotides as discussed earlier. Indeed, Liu et al demonstrated the high 

affinity for which isolated Kvβ2 bound to multiple nucleotides (72). The Kvβ1 also imparts 

unique sensing abilities to the Kv channels which provide a possible mechanism of Kv channel 

modulation in activity and expression during metabolic alterations within the cell. Perez Garcia 

et al  et al demonstrated that when Kvβ1.2 was bound it provided oxygen sensitivity to Kv4.2 

channel, as well as previously demonstrating that the Kvβ subunits provide a mechanism for 

redox alterations including sulfhydryl groups (108). Oxidizing agent (DTDP) which may 

increase intracellular NAD demonstrated decreased rate of inactivation while DTT a reducing 

agent fostered inactivation. Further that a hypoxic environment fostered a decrease in Kv4.2 

amplitude but only in the presence of Kvβ. Further it was later demonstrated that Kvβ1 provided 

redox sensitivity towards H2O2 and direct injections of NADP resulting in reduced inactivation 

with Kv1.1 and Kv1.2 an otherwise non responsive channel towards redox alterations (98, 146). 

Therefore the Kvβ1 may be acting as an intracellular redox-sensing device modulating the 

activity of multiple Kv channels (Fig 1).  While there are different Kvβ subunits in the heart, the 

relative affinities and the abundances may be useful for different physiological functions. For 

example: The Kvβ2 which lacks the ball has highest affinity for NADPH 

(0.14µM)>NADP>NADH>NAD (72). Similarly, Kvβ1 follows this affinity pattern, however, 

consists of long ball-and-chain capable of inactivation or accelerating the self-inactivating Kv 

channels. On the other hand Kvβ3, has the least affinity for NADPH (0.6µM) 
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>NADP>NADH>NAD, and consists of the longest ball and chain which originates from the 

available N-terminus region (137). Therefore overall, the Kvβ subunits are somewhat redundant 

in their features but differ in many biochemical features as well as affinities towards Kv channel 

assembly. While Kvβ subunits and pyridine nucleotide interactions demonstrate no effect on 

their ability to bind with Kv channels, their interaction does have the ability to significantly alter 

electrical and physiological channel function. 

 Cardiac Action Potential  

The normal cardiac action potential within the myocardium begins in phase 4 also known 

as the resting membrane potential typically around -90mV for cardiac myocytes. Phase 0 is the 

rapid depolarization phase in which the membrane potential is sent to a positive voltage by the 

opening or activating of the cardiac sodium channels and the influx of sodium ions. The 

myocardium quickly enters phase 1 the rapid repolarization phase which sets the potential for the 

next phase. Phase 1 is initiated by the fast inactivating voltage-gated potassium channels or the 

Ito current which open and close rapidly. Phase 2 is the longest and is known as the plateau phase 

in which calcium channels are opened or activated. While calcium channels continue to allow 

Ca
2+ 

to enter the cell potassium channels are working simultaneously with an efflux of K
+ 

ions. 

This continually release of potassium ions by multiple potassium channels eventually leads to 

phase 3, the rapid repolarization that returns the membrane potential to its resting state and thus 

return to phase 4 (38).  

Cardiac K
+ 

channels exist in three categories including the Voltage-gated (Ito, IKur, IKr, IKs), 

inward rectifiers (IK1, IKAch, IKATP), and background K
+ 

currents (TASK-1, TWIK-1/2). The Kv 

channels activity play key roles in cardiac action potential including setting the membrane 
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potential, shaping the action potential waveform, and determining action potential frequencies 

(54). Interestingly the voltage-gated potassium channels can form heteromultimers with similar 

Kv channels (Kv4.2 and 4.3 for example) in which many of these channels as homomultimers (in 

heterologous expression models) can demonstrate unique electrical properties that may in fact be 

significantly altered from their heteromultimer form in native cells. In addition, not only can α-

subunits form heteromultimers but Kvβ-subunits can also form heteromultimers within the Golgi 

while binding with Kvα channels demonstrating again unique electrical properties within native 

cells. The Ito current or the transient outward current is a Ca
2+

 -independent current playing a 

significant role in the repolarization composed of a fast and slow component, Ito’f  and Ito’s 

respectively with molecular correlates of Kv4.2/4.3 and Kv1.4 respectively (20, 43). The rate of 

activation for the Ito is fast generally <10 ms while inactivation is variable and voltage-dependent 

(38). While Ito plays a profound physiological role in establishing the AP, recent research has 

highlighted its importance during pathological conditions demonstrating a density reduction in 

failing hearts (86, 149). Indeed, recently Ito
 
reduction in heart failure may act as a mediator or 

promoter of heart failure rather than a secondary change (100, 101, 123, 151). While current 

density and overall expression levels may be altered during these pathological conditions a better 

understanding of how the Kvβ1 subunit a known binding partner of Kv4.2/4.3 regulates theses 

pathological changes. 

 Kvβ1 in Cardiovascular System 

To date little is known of the role Kvβ1 plays during cardiac pathology including cardiac 

hypertrophy and heart failure. However, Kv channel dysregulation and altered metabolic 

pathways including the NAD/NADH ratios occur during these pathophysiological conditions 

thus it stands to reason that the role of Kvβ1 may provide vital information in cardiac pathology. 
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Cardiac hypertrophy taken as one example often presents with an overall enlargement of the 

heart either demonstrating eccentric or concentric hypertrophy often dependent upon the 

stimulus. Eccentric hypertrophy often presents with an overall enlargement of the heart including 

an increase in ventricular diameters. Typically eccentric hypertrophy is demonstrated in 

physiological hypertrophy such as in constant exercise. Concentric hypertrophy presents with an 

enlargement of the heart with increased wall thickening such as the left ventricular free wall. 

This form of hypertrophy is often demonstrated during pathological conditions such as increased 

pressure overload (observed in those with hypertension and obesity). The heart is often 

challenged to pump harder to ensure proper blood flow thus increasing the amount of strain on 

the walls. Concentric hypertrophy is often an adaptive phenotype during pathological conditions 

and if continued often leads to heart failure in which the adaptations (increased wall thickening) 

can no longer manage the demand and can begin to cause chamber dilation ultimately leading to 

heart failure.  

While physical alterations are occurring within in the heart during forms of hypertrophy, 

electrical changes are also occurring often demonstrating decreases in current density, prolonged 

QT durations as well as, prolonged action potential durations. These changes are well 

documented and are often the result of channel modulation including the decrease in Kv4.2 

expression and Ito current density during cardiac hypertrophy (121, 140). The decrease in key Kv 

channels is often the start to electrical abnormalities as the repolarization phase prolongs 

allowing for greater risk of delayed after depolarization leading to arrhythmic events. Further 

studies have also hinted at the role Kv channel subunits play during these pathophysiological 

conditions as a possible area of rescue. Backx et al demonstrated that during banded aortic 

constriction a decrease in Kv4.2 and prolongation of action potential was noted in 14-week old 
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rats, however when injected with adeno-viral KCHIP2 resulting in an overproduction of KCHIP2 

the prolonged action potential was reduced to pre-aortic constriction level (101). In addition, as 

discussed earlier these pathological conditions not only result in Kv channel changes but also 

result in metabolic alterations as well. In many cardiac pathological states the increased cytosolic 

levels of NADH have been noted in hypertension, ischemia, and heart failure (Table 1) (12, 69, 

70, 155). 

While genetic ablation of Kvβ1 demonstrated no cardiac developmental defects, a 

significant difference was noted in the current levels of Ito,f within isolated cardiomyocytes of 10 

week old males (2).  In addition, the “knocking out” of Kvβ1 has demonstrated unique 

phenotypes resulting in neurological defects involved in learning and memory. Kvβ1.1 KO mice 

at three months (12 weeks) demonstrated a significant decrease in learning and memory assessed 

by the STFP task (social transmission of food preferences) (32). Interestingly aged Kvβ1.1 

mutant (1 year old) actually demonstrated an enhanced neuronal excitability and performed 

better than WT controls on the Morris water maze test (85). Mice lacking both Kvβ1.1 and Kvβ2 

demonstrated increased mortality in addition to increased cold-induced tremors (15). Recently it 

has been demonstrated that multiple gene analysis reports have identified Kvβ1.1 as a prime 

target for both mutated and missing in multiple pathologies including epilepsy, breast carcinoma, 

hypertension, cataract, and sudden cardiac death (4, 14, 45, 67, 80, 161).  

Calcium may also play an intricate part of Kvβ’s ability to regulate the cardiac action potential. 

Previous research demonstrated that intracellular calcium increases by ionomycin (ionphores) or 

IP3 signaling blunts Kvβ1 induced inactivation of Kv1.1 resulting in increased steady-state 

Kv1.1 current (51). More recently it was demonstrated that calmodulin a intracellular calcium-

binding messenger protein binds to the “chain” structure of the Kvβ1.1 subunit and inactivation 
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activity (131).  While conducted in HEK cells it does stand to reason how cardiac intracellular 

calcium levels could affect Kvβ1.1 and the ion channels it binds to such as Kv4.2.  

 

 

Tables and Figures  

Table 1: Pyridine nucleotide alterations in pathological states 

Cardiac 

Pathology 

Pyridine Nucleotides Model Reference  

GPD1-L Mutation NADH Lactate (10:1) 70,72 

Hypertrophy NAD Angiotensin II  110 

Hypertension NADH DOCA 69 

Ischemia NAD ischemia-reperfusion 12 
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Figure 1: Kv-Kvβ interaction. A stylized structure of the Kv α-subunit bound with the Kvβ 

subunit (Kvβ1) at the membrane level. Pyridine nucleotides bound (in this example NAD and 

or NADH) causing alterations in Kv channel kinetics. Electrophysiologically recorded K
+
 

currents demonstrate when NADH is bound inactivation is favored thus inactivating at a 

much faster rate. However, when NAD is bound Kvβ mediated-inactivation is abolished and 

inactivation is slowed. From (Heinemann, S. H. & Hoshi, T. 2006. Multifunctional Potassium 

Channels: Electrical Switches and Redox Enzymes, All in One. Heinemann, S. H. & Hoshi, 

T. 2006. Multifunctional Potassium Channels: Electrical Switches and Redox Enzymes, All in 

One. Science's STKE, 2006, pe33-pe33. Reprinted with the permission from AAAS.  
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CHAPTER TWO: 

Characterization of Kvβ1.1 knockout mouse model and its cardiovascular implications:  

Electrical changes in both sexes but cardiac hypertrophy only in female. 

 

Introduction  

Cardiovascular disease (CVD) is a leading cause of death for women in the United States. 

In 2009, about 33,000 females died from high blood pressure and heart failure, in the U.S. (34). 

Sex differences have been reported in CVD, in which females are at lower risk for atrial 

fibrillation however, they present with higher incidences of Torsades de Pointes (TdP) and are 

therefore at greater risk for sudden death (7, 27, 79). In addition, females demonstrate more 

severe ischemic heart disease including stress induced cardiomyopathy, plaque erosion and 

microvascular dysfunction (17). Health disparities in females are highly prevalent and the 

treatment modalities are based on male driven parameters (18, 154).  

One prominent sex disparity is in QTc interval and action potential duration (APD) indication 

dramatic sex specific differences in cardiac repolarization phase. This phenomenon is well 

documented in women taking anti-arrhythmic drugs demonstrating a greater risk of drug-induced 

long QT syndrome LQTS/TdP (63, 66, 79, 134). The prolonged QTc and AP durations suggests 

that there is a limited repolarization reserve in females, which blocks further prolongation of AP 

durations and generation of early after depolarization (EAD) (36, 157). Cardiac sex differences 

noted in humans has also been demonstrated in animal studies, which show an increase in QT 

duration as well as, an increase in incidences of early after depolarization  in female rabbits after 

anti-arrhythmic drug exposure (24, 94, 109).  Repolarization reserve in heart is constituted by 



www.manaraa.com

18 
 

three main potassium currents (IKr, IKs, and IK1) which work in synchrony and allow the return of 

membrane potentials to the resting state, and therefore play a vital role in cardiovascular function 

and disease (125). Mice demonstrate similar repolarization reserves to humans and are 

constituted by distinct potassium currents (IKslow1, IKslow2, and Iss), and although slightly different 

in kinetics, the currents show similar contributions to action potentials (90). Disruption of the 

repolarization reserve can lead to CVD including arrhythmic events (13, 97). While overall 

murine action potential’s are different when compared with humans key potassium channels such 

as those studied in this report are very similar between species. In addition, guniea  pigs 

demonstrate extremely similar QT and ST wave elements in ECG signals and therefore may be 

an additional model to utilize.  

Because potassium channels (Kv) are pivotal to the repolarization reserve, understanding how 

Kv channel accessory subunits can alter this reserve may provide novel mechanistic insights. The 

voltage-gated potassium channel subunit (Kvβ1) belongs to the aldo-keto reductases (AKR) 

superfamily which is found abundantly in the heart. The Kvβ subunit demonstrates a unique 

ability to bind and regulate many Kv channels including Kv4 and Kv1 channels (2, 19, 30, 112). 

Previous research on Kvβ1 knockout mice demonstrated reduced K
+
 channel inactivation(2) and 

after-hyperpolarization as well as increased neuronal excitability in the brain (32, 85). Genomic 

research has begun to shed light on the importance of Kvβ1 (Gene name KCNAB1) in 

cardiovascular health. In 2008, a patient passing from sudden cardiac death demonstrated a 

deletion in KCNAB1 (4). In addition, recent genomic studies identified KCNAB1 as a gene of 

interest for genetic association with blood pressure and causal variant in humans with 

hypertension (14, 80). 
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In this present work we demonstrate that 12-14 week old Kvβ1.1KO mice are physiologically 

altered compared with wild type (WT) controls. This is the first report that clearly delineates the 

physiological role of Kvβ1.1 in female murine hearts. In addition, we utilized physiological 

comparison between male and female to identify electrophysiological and vascular differences to 

understand the roles of Kvβ1.1.  

 

Materials and Methods 

 Ethical Approval of Animals: Kvβ1.1 KO (global) (32) and C57BL6/NJ (wild type; 

WT) female and male mice were obtained from Jackson Laboratories, stock number 007747 (Bar 

Harbor, ME, US). Mice of 12-14 weeks of age were used (20 female mice with average weights 

of 19-21g and 15 male mice with average weights of 26-28g, of each strain). All animal protocol 

and use was approved by the Institutional Animal Care and Use Committee (IACUC) at the 

University of South Florida (Tampa, FL, USA), which is consistent with the practices approved 

by US National Institutes of Health guidelines. Investigators understand the ethical principles 

under which the journal operates and that this work complies with the journals animal ethics 

checklist.  All the mice had continuous access to food and water, ad libitum. Mice were injected 

with heparin (360 USP, sigma) and euthanized with Somnasol (50 mg/kg body weight) by i.p. 

injection and heart tissue was excised after thoracotomy, snap frozen in liquid N2 and stored at -

80°C until further use.  

 Cell culture (H9C2) and siRNA: The H9C2 cells were purchased from ATCC 

(Manassas, VA, USA), and were cultured in 5% CO2 incubator (Thermo Fischer Scientific, IL, 

USA) using standard DMEM medium (Invitrogen) supplemented with 10% Fetal Bovine Serum 
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(Invitrogen), penicillin and streptomycin (10mg/ml) antibiotics. For siRNA transfection 

experiments, the cells were transfected with 50 nM of either scrambled inhibitor or Kvβ1.1 

siRNA (Cat# EMU086161, Sigma Aldrich, MO, USA) at 70% confluence using siLentFect™ 

lipid reagent (BioRad). Cells were observed for signs of toxicity for every 24 h under 

microscope. No detectable cell loss or change in cell morphology was observed in either groups. 

Total RNA was extracted 72 hrs post-siRNA treatment using Exiqon RNA isolation kit as 

described below. 

 Histochemistry:  Female Kvβ1.1 KO and WT hearts were frozen after isolation by 

thoracotomy and then sectioned (25 µm) using a cryostat (Microm HM505 E, Walldorf, 

Germany). Sections were stained with hematoxylin/eosin for histological examination(104). 

 

 Echocardiography: Serial transaortic echocardiography (Visualsonic Vevo 770
TM

, 

30MHz linear signal transducer) (Toronto, Ontario, Canada) was taken under 2-3% 

isoflurane/oxygen anesthesia. The mice were depilated as required for imaging and placed on a 

37
o
C heated platform throughout the imaging procedure. Echo measurements were taken from at 

least three different cardiac cycles for each mouse. M-mode imaging from short-axis of the left 

ventricle (LV), using the papillary muscles for reference, was used to obtain measurements of 

LV posterior and anterior wall (LVPW/LVAW) thickness as well as LV internal dimensions 

(LVID’d and LVID’s) in diastole and systole. Fractional shortening (FS%) and ejection fraction 

(EF%) were calculated as previously described(104). For measuring systolic flow Pulse wave 

(PW) – Doppler was used to image the ascending aortic arch as well as the pulmonary artery in 

long-axis to obtain mean flow velocity and velocity-time integral of both aortic arch and 

pulmonary artery.  
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 Electrocardiography (ECG): ECG recordings were obtained from mice under 4-5% 

isoflurane/oxygen anesthesia using surface probes in lead II configuration. ECGs were acquired 

for a total duration of 15 min, with 1 min recordings obtained at 5 minute intervals. Heart rate 

was measured while ECG signals were obtained. Signal was acquired at 1000 μs rate by using 

PowerLab system operated with LabChart 7.2 software (AD Instruments, UK), and data was 

analyzed offline using the ECG module of LabChart 7.2 software, as reported elsewhere (8, 13). 

The intervals (ms) of RR, PR, QRS and JT were measured. QT interval was measured from the 

start of the Q peak to the point where the T wave returns to the isoelectric baseline (TP baseline), 

and heart rate corrected QT (QTc) interval was obtained using (QTc = QT / ((RR/100)
1/2

)(25, 

82).  

 

 Blood Pressure Measurements: Non-Invasive tail-cuff method was utilized to measure 

blood pressure and heart rate in conscious mice. Mice were placed in plastic restrainers and 

placed on a water heater at 37°C for 10 min. A pressure transducer was placed on the tail of the 

mice. Mice were allowed to habituate to this procedure for 5 days before experiments were 

performed. Blood pressure (BP) and heart rate (HR) values were recorded using a Model CODA 

Standard, 1 animal Noninvasive blood pressure system (Kent Scientific, CT) with heating. Final 

measurements were averaged from 10 consecutive readings obtained from each mouse. 

 

 Monophasic Action Potentials: Monophasic action potentials (MAP) were recorded 

from ex vivo KO and WT female mouse hearts. Mice were injected with 1 mg heparin (180 USP, 

sigma) and euthanized with Somnasol (50mg/kg body weight) by i.p. injection. Hearts were 
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isolated through a bilateral thoracotomy and retrograde perfusion with Krebs-Hanseleit buffer 

(mM- 119 NaCl, 25 NaHCO3, 4 KCl, 1.2 KH2PO4, 1 MgCl2, 1.8 CaCl2, 10 D-glucose and 2 

Sodium pyruvate, pH 7.4) at a constant flow rate of ~2.2 ml/min, 37°C (13). Monophasic action 

potentials were recorded from left ventricular (LV) epicardial surface using contact electrode 

(Harvard apparatus, MA). Hearts were stabilized for 15 minutes and AP data were acquired 

using 8 channel PowerLab system (AD Instruments, UK). 

 

 Quantitative Real-Time-PCR (qRT-PCR): Total RNA was isolated from the 

ventricular apex of Kvβ1.1 KO and WT female hearts using Exiqon miRCURY RNA Isolation 

kit (Exiqon, Woburn, MA) according to the manufactures protocol. Complimentary DNA 

(cDNA) from total RNA was synthesized and quantitative real-time PCR (qRT-PCR) analysis 

was performed for measuring mRNA expression of hypertrophic markers including MHCα, 

MHCβ, GATA6, BMP10, and PI3K. All the cDNA synthesis and qRT-PCR procedures were 

performed as described previously(104). The expression of mouse HPRT transcript was used as 

an endogenous reference. Data were expressed as mean fold change (±SEM; n=3). 

 

 Western Blotting: Protein lysates for Western blotting were prepared from both KO and 

WT female mouse hearts. Left ventricles were homogenized and procedures were performed as 

described previously (102-104). The supernatant was collected and stored at −80°C. Equivalent 

amounts of protein were loaded and separated by 4–20% gradient SDS polyacrylamide gels 

(Bio-Rad Laboratories). Proteins were detected with a dilution of primary antibody; MHCβ 

(MAB1548) and MHCα (AB50967) at 1:200 and1:1000, respectively. Target protein band 
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densities were quantified using Image-J software, and normalized with Ponceau S stained total 

protein band densities. 

 

 Pull-down Assay:  To identify the interaction between Kvβ1.1 and MHCα in the heart, 

we conducted a pull-down assay using whole ventricular tissue lysate. Briefly, 5 μg of DDK-

tagged Kvβ1.1 plasmid (Origene) was transiently expressed (72 hrs) in Cos-7 cells grown to 90% 

confluence in a 10 cm plate. Total cellular protein was extracted from Kvβ1.1-DDK expressing 

Cos-7 and mice ventricles by homogenization using extraction buffer containing (in mM) 50 mM 

Tris, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Nonidet P40 (NP40) (ThermoScientific, USA) 

supplemented with 10 mM DDT, 1:100 protease inhibitor (Sigma-Aldrich, St. Louis, MO) and 

1:100 protease inhibitor (sigma). Tissue lysate was then centrifuged at 10,000x g for 10 minutes 

at 4°C, and the supernatant was collected. Protein quantification was performed using Pierce 660 

assay (Thermo Fisher Scientific, Waltham, MA). 200 μg of Kvβ1.1-DDK Cos-7 lysate was 

incubated with Anti-DDK Agarose beads (Origene, Rockville, MD) for 3 hrs at 4°C, and 500 μg 

of pre-cleared ventricular tissue lysate was then added and incubated overnight at 4°C. Bound 

proteins were then eluted and immunoblot analysis was conducted using MHCα antibody.  

 Pathway Analysis: Differentially expressed genes from qRT-PCR data were selected for 

network analysis using Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, Inc., 

CA, USA). Based on the existing literature, IPA identified the networks from its library of 

canonical pathways that were most significant to the data set. The significance of the association 

between the data set and the pathway network was measured by a ratio of the number of genes 

from the data set that map to the pathway divided by the total number of genes that map to the 

canonical pathway. 



www.manaraa.com

24 
 

 Statistical Analysis: A Student’s t-test was used to identify significant pair-wise 

comparisons for all parameters between WT and KO mice. Statistical analyses were performed 

with Sigma Plot (version 11.0) and MS Excel. Data are expressed as mean ± SEM; and p-values 

≤0.05 were considered statistically significant   

 

Results 

 Kvβ1.1 KO females demonstrate altered cardiac structure and systolic function 

 The Kvβ1.1 KO female mouse hearts demonstrate a significant increase in heart weight 

compared with WT controls (Figure 2A). The Kvβ1.1 KO male mouse hearts however, 

demonstrated no significant heart weight difference when compared with WT male controls 

(Figure 2B). Histological sections of female hearts showed an overall increased size of the KO 

hearts compared with WT controls (Figure 2C and 2D). Echocardiographic measurements 

confirm the overall size increase in heart as LV mass measurements showed a significant 

increase in KO females compared with WT controls (122±7 vs. 103±4 mg) (Figure 3C). M-

mode short axis measurements demonstrate a significant increase in the LVID at both systole and 

diastole, in addition to the volume pumped at both systole and diastole (Figure 3A and B). 

Furthermore, the stroke volume was significantly higher in KO females compared with WT 

controls (41±1.8µl vs. 35±1.7µl) (Figure 3D). However, no differences were noted in LV wall 

thickness (including anterior and posterior) or functional indices including ejection fraction and 

fractional shortening between the female KO mice compared with WT controls (Table 2 and 3).  
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 Arterial and blood pressure differences in Kvβ1.1 KO female mice 

 Blood pressure measurements in female KO mice demonstrated significant elevation at 

both systole and diastole compared with female WT control mice (Figure 4A and B). Male KO 

mice showed only a small and statistically non-significant elevation in blood pressure when 

compared with WT controls (Figure 4D and E). Heart rates between KO and WT in both sexes 

indicated no significant difference (Figure 4C and F).  PW-Doppler imaging was used for 

assessing the ascending aorta and pulmonary artery to measure systolic flow parameters of the 

left and right side of the heart. KO mice demonstrate an increase in mean gradient pressure as 

well as velocity time integral (Figure 5A-C) in the ascending aorta when compared with WT 

mice, which is indicative of increased LV pressure in KO female mice. A small increase in VTI 

was also observed in the pulmonary artery, but this was not significantly different from WT 

controls (Figure 5D).  

 

 Kvβ1.1 KO prolongs QTc interval in both male and female mice 

 As show in Figure 6A, the averaged traces show significantly longer QTc interval in KO 

(51±1.8ms) female mice when compared with WT females (45±2.1ms) (Figure 6B). In addition, 

the QRS interval was significantly prolonged in KO females compared with WT females (Figure 

6C). Male Kvβ1.1 KO mice showed significantly longer QTc intervals (Figure 6D), however 

QRS interval did not change significantly (Figure 6E). These data suggests that the 

repolarization phase in Kvβ1.1 KO mice is altered compared with WT controls. Additional ECG 

measurements including P duration demonstrated slight significance in KO females (Table 4 and 

5).  
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 Prolonged monophasic action potentials in Kvβ1.1 KO hearts 

 Monophasic action potential traces were recorded from left ventricular epicardial surface 

of hearts using ex vivo perfusion in females (Figure 7A) and males (Figure 7C). Analysis of the 

trace from female KO hearts revealed a significantly prolonged APD from 20-90% repolarization 

levels; APD90 (57±1.8 vs. 49±2.5), when compared with WT (Figure 7B). However, male KO 

hearts demonstrated significant prolonged APD’s from 50-90% repolarization levels only 

(Figure 7D). Nevertheless, these data suggest that Kvβ1.1 KO hearts demonstrate prolonged 

action potential durations.  

 

 Differential mRNA expression of key hypertrophic markers and Kv channels 

 As we observed significant differences in the structural, hemodynamic and electrical 

indices in KO female mouse hearts compared with WT, we examined the expression levels of 

various genes that have been previously linked to these phenotypes cardiac myosin; MHCα(6), 

MHCβ(7), PI3K, GATA4, GATA6 and BMP10. Data from the present study reveal that mRNA 

levels of MHCα were significantly increased in KO female mouse hearts compared to WT 

controls, whereas no change in MHCβ transcripts was noted (Figure 8A). The mRNA levels of 

GATA4, GATA6, and BMP10 significantly increased while PI3K decreased in KO female hearts 

compared with WT hearts (Figure 8A).  

 

 Differential expression of myosin isoform proteins  

 Gene expression changes noted in MHCα (Figure 8A) were confirmed by using Western 

blot, which showed a significant increase in MHCα expression within the LV in KO female mice 
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compared with WT male controls (Figure 8B and 8C). Western blot analysis also revealed small 

increase (not significant) in MHCβ expression in the LV KO heart compared with WT mice.  

 

 MHCα interacts with Kvβ1.1 subunit 

 To evaluate the protein-protein interaction, we performed a pull down assay to identify 

the association between Kvβ1 and MHCα. As shown in Figure 8D, lane 1 identifies MHCα as 

the protein that was pulled using the DDK-Kvβ1 affinity assay. However, no relevant protein 

was identified in lane 2 at the similar molecular weight range. Overall, these data demonstrates 

that Kvβ1 protein interacts with MHCα in the mouse heart.  

 

 Kvβ1.1 knockdown causes MHCα upregulation 

 We evaluated the co-regulation of Kvβ1 and MHCα by using siRNA knockdown in 

H9C2 cells (rat cardiomyoblasts). Inhibiting the expression of Kvβ1.1 in H9C2 cells clearly led 

to higher expression of MHCα in the cardiac cells. As shown in Figure 8E, we identified the 

regulation of key genes including GATA4, GATA6 and MHCα altered in the Kvβ1.1 

knockdown group compared with the scrambled siRNA. These data confirm that Kvβ1 

knockdown modulates the expression of the genes that were altered in the Kvβ1.1 KO mouse 

model. 

 

 Expression of key Kv channels and Kvβ subunits 

 The mRNA expression of key Kv channels and Kvβ subunits were not significantly 

altered (Figure 9A and 9B). Comparison of Kvβ1.1 levels between male vs female wild type 

mouse hearts shows significantly increased expression in females (Figure 9C). 
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Discussion 

 In the present study, we report the physiological role of Kvβ1.1 in the murine heart. Our 

morphometric and echocardiographic assessment clearly demonstrate that KO female mice have 

significantly enlarged hearts with altered cardiac function compared with their WT controls. 

Male KO mice however, demonstrated no alteration in heart size in comparison, emphasizing a 

sex specific difference in Kvβ1.1 KO female mice. The ECG and monophasic action potential 

analysis identified prolongation in QTc and APD’s demonstrating that the repolarization reserve 

is depleted in both male and female Kvβ1.1 KO mice. At the molecular level, we identified novel 

protein-protein interactions between Kvβ1 and MHCα and confirmed that MHCα expression can 

be specifically modulated by Kvβ1 knockdown.  

 

 Electrical remodeling in Kvβ1.1 KO mice 

 Prolonged repolarization indices such as; QTc and APD, in KO mice suggest that Kvβ1.1 

is necessary for Kv channel activity and therefore vital to the repolarization reserve. It is well 

known that Kv channels such as Kv1.x and Kv4.x are major contributors to the repolarization 

reserve in the heart. Alterations in Kv channels in heart can lead to arrhythmic events and altered 

cardiac metabolism (13, 96). Several studies in the past demonstrated that Kvβ subunits bind to 

and modulate the activities of Kv1.x and Kv4.x channels (112). Heterologous expression studies 

have shown that different splice isoforms of Kvβ1 can bind to and confer inactivation of both 

slowly or rapidly inactivating Kv1.x channels (117, 137, 138). It has been shown that Kvβ1.1 

binds to Kv4.2 and Kv4.3 in mouse ventricles, and deletion of Kvβ1 leads to decreased Ito,f  
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current densities in male mice (2). Consistent with these evidence, our present data show 

prolonged APD and QTc in KO group, suggesting that Kvβ1.1 is an essential contributor to 

cardiac repolarization. Repolarization defects noted in KO female hearts showed significant 

hypertrophy, suggesting differential structural remodeling in females.  

 Vascular alterations in Kvβ1.1 KO mice  

 Power Doppler analysis indicates that increased vascular resistance may be the more 

likely cause of the observed hypertrophy in KO female mice since both the mean aortic gradient 

pressure and aortic velocity time integral (VTI) are significantly higher in KO females compared 

with WT controls. Blood pressure recordings demonstrated a significant increase in KO females 

when compared with WT female controls. KO males however, demonstrated a small and 

statistically insignificant elevation in blood pressure. An increase in blood pressure can result in 

pressure-overload on the heart leading to the development of left ventricular hypertrophy (LVH) 

that can progress further to hypertensive heart disease (22). Echocardiographic analysis also 

supports this idea as female KO mice have an increased LV internal diameter at diastole and 

systole indicating LV dilatation (23), and increased left ventricular mass which is corroborated 

by the higher cross sectional area observed using stained tissue sections, which collectively 

suggests that female KO mouse hearts are hypertrophic (13, 104). Lack of any significant change 

in ejection fraction, which reflects a fractional change in the LV end diastolic volume, indicates 

no differences in the fractional LV output at each cycle. Despite this, we observed increased 

aortic blood flow rate as well as KO females presenting with higher blood pressure than WT 

controls, which could, at least in part, contribute to the development of cardiac hypertrophy.  
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Kvβ1.1 alterations to cardiac MHCα expression 

 Cardiac remodeling involves changes in expression of key genes involved in regulating 

the electrical and the function of the heart. Therefore, we assessed mRNA and/or protein 

expression of key genes in the heart. We found that myosin isoform expression was significantly 

altered in the heart of KO females. Significantly larger elevation of MHCα (fast isoform) 

expression; both mRNA and protein, clearly indicates features of a hypertrophic response in KO 

female heart. Further, mRNA expression of Kvβ1.1 in heart demonstrated a significant increase 

within females compared to males in wild type mice indicating that Kvβ1.1 may play a 

significant cardiac specific role in females. To develop an overall understanding of the Kvβ1.1 

gene at the molecular level, we utilized the Ingenuity Pathway Analysis (IPA) and provided 

experimental data as input for predicting possible pathways that are involved in the cardiac 

remodeling. Based on this analysis, the final targets for cardiac hypertrophy in murine heart are 

GATA-4, GATA-6, and MHCα (MYH6), which are majorly altered in KO female hearts (Figure 

10). The transcription factors GATA-4 and GATA-6 have previously been demonstrated to have 

a profound effect on MHCα and β expression (47, 77, 83, 162). Furthermore, PKA and PKC, 

which are known targets affected by cardiac hypertrophy, demonstrate significant interactions 

with GATA4, which is one of the key transcription factor that activates MHCα (MYH6) (128, 

145).  Although how Kvβ1.1 or absence of Kvβ1.1 alters the expression of GATA-4, GATA-6 

and MHCα (MYH6) remains unclear, protein-protein interaction between Kvβ1.1 and MHCα in 

conjunction with elevated MHCα expression in Kvβ1.1 KO mouse hearts and Kvβ1.1 siRNA 

treated H9C2 cells strongly suggests a potent inhibitory role of Kvβ1.1 in MHCα regulation. 

Collectively, the expression data and network analysis suggests that in female KO mice, there is 



www.manaraa.com

31 
 

an upregulation of the hypertrophic pathway that involves altered expression of myosin heavy 

chain genes as well as key transcription factors including GATA-4. 

Study limitations 

 In this study, mice with global knockout of Kvβ1.1 gene were utilized for experimentation. Our 

study demonstrated significant cardiac structural and hemodynamic differences in the female KO 

mice. However, since Kvβ1.1 female KO mice show high blood pressure, it is likely that 

vascular changes may be involved in causing cardiac hypertrophy.  Future studies are necessary 

to identify the vascular component and how deletion of Kvβ1.1 affects the female mice.  

 

Conclusion  

In conclusion, we identified structural, electrical and hemodynamic differences in Kvβ1.1 KO in 

murine hearts. This is the first study demonstrating that deletion of Kvβ1.1 leads to increased 

blood pressure, electrical changes and cardiac hypertrophy in the female murine hearts. We 

identified that the male mice failed to develop cardiac hypertrophy and high blood pressure 

despite altered electrical activity. Overall, the female mouse hearts depict distinct physiological 

changes up on deletion of Kvβ1.1 gene compared with male mice. At molecular level, the female 

hearts confirm the major hallmarks for cardiac hypertrophy such as MHCα and it’s binding to 

Kvβ1.1. Therefore, this study brings fundamental new information for understanding the roles of 

Kvβ1.1 in female murine hearts and its relation to cardiovascular physiology. In future 

experiments ovariotomy of female mice may demonstrate a unique interaction between estrogen 

levels and Kvβ1.1 that highlights a male-female difference in function.  
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Tables and Figures 

Table 2: Echocardiography M-mode Measurements  

Mice LVAW(s) mm LVAW(d) mm LVPW(s) mm LVPW(d) mm 

Kvβ1.1
-/-

 1.3±0.05 0.88±0.04 1.1±0.03 0.8±0.01 

Wild type 1.3±0.05 0.87±0.04 1.1±0.06 0.8±0.03 

P-value NS NS NS NS 

 

Table 3:  Echocardiography M-mode Measurements 

Mice V(s) µl V(d) µl EF% FS% CO (ml/min) 

Kvβ1.1
-/-

 27.7±1.6 69±3.1 60±1.2 31.6±0.8 18±0.9 

Wild type 21.4±2.2 57±2.8 63±2 34±2 15.8±0.8 

P-value 0.03 0.008 NS NS 0.07 
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Table 4: ECG Measurements (Females) 

Female 

Mice 

RR 

Interval 

(ms) 

PR 

Interval 

(ms) 

P Duration 

(ms) 

QT Interval 

(ms) 

JT Interval 

(ms) 

Kvβ1.1
-/-

 148±3 43±1.6  12±0.7 20±0.7 10±0.7 

Wild type 144±3 40±0.7 10±0.5 17±0.7 9.5±0.8 

P-value NS NS 0.04 0.02 NS 

 

Table 5: ECG Measurements (Males) 

Male 

Mice 

RR 

Interval 

(ms) 

PR 

Interval 

(ms) 

P Duration 

(ms) 

QT Interval 

(ms) 

JT Interval 

(ms) 

Kvβ1.1
-/-

 144±4 42±0.5  9.8±0.6 22±0.6 14±0.7 

Wild type 140±2.3 53±4.5 12±0.8 20±0.5 11±0.5 

P-value NS 0.04 NS 0.007 0.002 
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Figure 2. Cardiac structural analysis by morphometry: A. Female heart weight 

normalized with tibia length from WT and KO hearts, bar graph is mean±SEM (n=10) and 

*p<0.05. B. Male heart weight normalized with tibia length from WT and KO hearts, bar 

graph is mean±SEM (n=15). C. Cross sectional image of the heart from wild type (WT) 

and knockout (KO) female mice. Heart sections were taken at 25-µm thick and stained 

with hematoxylin/eosin; left ventricle (Lv) and right ventricle (Rv) are labeled.  D. Cross 

sectional area of hearts measured with Image-J software, and mean±SEM plotted using a 

bar graph (n=4) and *p<0.05.  
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Figure 3. Female cardiac measurements by echocardiography: A. B-mode short axis 

image of the left ventricle (LV) with papillary muscles visible (P). M-mode image of the 

interior of the LV with LVID;s and LVID;d (left ventricular internal dimension at systole 

and diastole) along with LVAW;d and LVPW;d (left ventricular anterior/posterior wall at 

diastole). B. LVID;s and LVID;d dimensions measured between wild type (WT) and 

knockout (KO). Bar graph is mean±SEM (n=13) and *p<0.05. C. Lv Mass estimated using 

M-mode images, bar graph represents mean±SEM (n=13) and *p<0.05. D. Stroke volume 

(SV) per beat obtained from M-mode images, bar graph is mean±SEM (n=13) and *p<0.05.  
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Figure 4. Blood pressure measurements: A. Female systolic blood pressure (SBP) 

measurements from WT and KO mice, bar graph is mean±SEM (n=8 mice) and 

*p<0.05. B. Female diastolic blood pressure (DBP) measurements from WT and KO 

mice, bar graph is mean±SEM (n=8 mice) and *p<0.05. C. Female heart rate (HR) 

measurements from WT and KO hearts, bar graph is mean±SEM (n=8 mice). D. Male 

systolic blood pressure (SBP) measurements from WT and KO hearts, bar graph is 

mean±SEM (n=8 mice). E. Male diastolic blood pressure (DSP) measurements from 

WT and KO hearts, bar graph is mean±SEM (n=8 mice). F. Male heart rate (HR) 

measurements from WT and KO hearts, bar graph is mean±SEM (n=8 mice). 
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Figure 5. A. Female Hemodynamic changes: B-mode image of the ascending aorta 

(Ao Arch) and PW Doppler image of the ascending aorta blood flow. B-mode image of 

the pulmonary artery (Pul Artery) and PW Doppler image of the pulmonary artery blood 

flow B. Aortic mean gradient pressure in millimeters per mercury measured between 

wild type (WT) and knockout (KO). Bar graph is mean±SEM (n=8) and *p<0.05. C. 

Aortic velocity time integral (VTI) taken from PW Doppler imaging, bar graph is 

mean±SEM (n=8) and *p<0.05. D. Pulmonary VTI taken from PW Doppler imaging, 

bar graph is mean±SEM (n=8). 
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Figure 6. ECG recordings: A. Averaged trace of lead-II ECG recording from WT 

(black) and KO (red) showing QTc duration from female mice. B. Female QTc 

interval in WT and KO mice, and bar graph represents mean±SEM (n=10) and 

*p<0.05. C. Female QRS duration in WT and KO mice and bar graph represents 

mean±SEM (n=10) and *p<0.05. D. Male QTc interval in WT and KO mice, and bar 

graph represents mean±SEM (n=10) and *p<0.05. E. Male QRS duration in WT and 

KO mice and bar graph represents mean±SEM (n=10). 
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Figure 7. Ventricular repolarization changes: A. Averaged recordings of monophasic 

action potential in WT (black) and KO (red) from females. B. Female action potential 

durations (milliseconds) at 20, 50, 70, and 90% repolarization in WT and KO mice, bar 

graph shows  mean±SEM (n=6) and *p<0.05. C. Averaged recordings of monophasic 

action potential in WT (black) and KO (red) (n=3) from males. B. Male action potential 

durations (milliseconds) at 20, 50, 70, and 90% repolarization in WT and KO mice, bar 

graph shows  mean±SEM (n=9) and *p<0.05. Monophasic action potential recordings 

were obtained at 37
o
C perfusion. 
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Figure 8. Female cardiac real-time PCR expression, protein, and protein-protein 

interaction analysis: A. Expression of myosin heavy chain isoforms (MHC) α and -β; PI3K, 

GATA4, GATA6 and, BMP10 known cardiac specific hypertrophy markers, bar graph is 

mean±SEM (n=3) and *p<0.05. Genes were normalized with a housekeeping gene (HPRT).  

B. Western blot images of MHCα and MHCβ from WT and KO left ventricular homogenate. 

C. Bar graph is mean±SEM (n=3) and *p<0.05, bands were normalized with Ponceau S 

stained full lanes. D. Western blot image of lane 1; KO left ventricle (Lv) and Cos-7 cells 

transfected with Kvβ1.1-DDK plasmid (β1.1
DDK

) and lane 2; Cos-7 cells transfected with 

Kvβ1.1-DDK plasmid (β1.1
DDK

) alone. Lane 1 was incubated overnight with DDK-coated 

agarose beads. MHCα (1:200) primary antibody was incubated overnight with blot, a 

225KDa band was noted in lane 1 with a limited band seen in lane 2. E. PCR expression of 

myosin heavy chain α as well as GATA4 and GATA6 72-hrs post Kvβ1.1 siRNA treatment 

in H9C2 (rat cardiomyoblasts) bar graph as mean±SEM (n=3) and *p<0.05. 
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Figure 9. Real-time PCR expression analysis: A. Female expression of 

voltage-gated potassium channels involved in cardiac repolarization including 

Kv1.4, Kv1.5, Kv2.1, Kv4.2, Kv4.3 and, Kv10.2 bar graph is mean±SEM (n=3) 

and *p<0.05. Genes were normalized with a housekeeping gene (18s).  B. 

Expression of voltage-gated potassium channel subunits Kvβ1.2, Kvβ2 and, 

KCHIP2 bar graph is mean±SEM (n=3) and *p<0.05. C. Expression of voltage-

gated potassium channel subunit Kvβ1.1 in wild type male (WT M) vs. wild 

type female (WT F) mouse heart, bar graph represents mean±SEM (n=3). 

Genes were normalized with a housekeeping gene (HPRT). 
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Figure 10. Gene network analysis: Top two networks identified by ingenuity pathway 

analysis (IPA) based on qPCR-expression data were merged. Potential interactions 

between KCNAB1 and MYH6 (MHCα) or GATA factors were incorporated into the 

analysis and indicated by dotted black line. Relative gene expression changes between WT 

and KO group were depicted by a color gradient from green to red, green represents higher 

expression for WT, whereas red represents KO. 
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CHAPTER THREE: 

Kvβ1.1 senses pyridine nucleotide changes in the heart and modulates cardiac electrical 

activity 

Introduction 

Cardiac injury including cardiac hypertrophy and myocardial ischemia demonstrate a 

decrease in NAD
+
 and sharp increase in NADH (12, 57, 110). Therefore modulation of NAD

+
 by 

supplementing the substrate or activation of the NAD
+
 synthetic pathway increases intracellular 

NAD
+
 which has been demonstrated as a plausible avenue of cardiac intervention in recent years. 

Exogenous NAD
+ 

injections resulted in significant rescue in agonist-induced cardiac hypertrophy 

in mice (111). Administration of nicotinamide mononucleotide (NMN) and nicotinamide 

phosphoribosyltransferase resulted in a significant increase in NAD
+ 

levels in the heart as well as 

reduced infarct size and improved cardiac myocyte survival after ischemia reperfusion injury 

(46, 155). The increase in NAD
+ 

levels leading to cardiac protection may be due to its ability to 

alter ion channel activity (53). Intracellular NADH was demonstrated to significantly alter the 

cardiac sodium channel (Nav1.5) and reduce peak currents as well as inhibit the Na
+
/Ca

2+
 (NCX) 

exchanger in ventricular myocytes (71, 73). 

The shaker potassium channel subunits (Kvβ), which are the members of the aldoketo reductase 

superfamily, are highly expressed in the heart and bind to voltage-gated potassium channels; Kv1 

and Kv4 (21, 53, 117). Kv channels play a key role in cardiac repolarization, specifically in to 

the determination of the duration of the action potential plateau observed in phase 1 (91). In 
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mouse ventricle it is well known that much of the Ito,f current is encoded by the molecular 

correlate Kv4.2/Kv4.3 responsible for the rapidly activating and inactivating potassium current 

(58, 106, 125). Further the Kv4.2 channel plays a critical role in the early cardiac repolarization 

as well as excitation contraction-coupling (124) and arrhythmias (10). Previous research also 

highlights the importance of potassium channel subunits including KCHIP2 (39) and Kvβ1(21) 

and their role in alternating Kv4.2/Kv4.3 affecting overall Ito current in cardiomyocytes and 

heterologous systems. 

Previously, it was demonstrated that Kvβ1-3 bind pyridine nucleotides with high affinity and 

alter Kv channel gating and regulation (53, 137, 139). Addition of NAD
+
 abolished Kvβ1 

induced inactivation of Kv1.5 currents, whereas inclusion of NADH in the patch-pipette 

solutions supported inactivation (139). These reports overall, support the idea that reduced 

pyridine nucleotides (NADPH or NADH) inactivate and oxidized pyridine nucleotides NADP
+
 

or NAD
+
) abolish Kvβ1 mediated inactivation and gating of Kv currents. Previous reports 

identified an increased learning and memory, neuronal excitability and synaptic plasticity in aged 

Kvβ1.1 knockout (KO) mice (85, 89). Kvβ1 KO also demonstrated a significant difference in Kv 

currents within left ventricular apex myocytes in 6-10 week old male mice (2). Moreover, 

Kvβ1.1 co-immunoprecipitates with Kv4.2 suggesting that Kvβ1.1 regulation of Kv4.2 activity 

may be of primary interest under pathophysiological stress. 

Earlier studies using heterologous expression systems have identified that Kvβ subunits bind 

pyridine nucleotides [NAD(P)H/NAD(P)] with high affinity and modulate the gating and 

kinetics of Kv channel (53). Moreover, cardiac injury frequently involves elevated NADH/NAD
+
 

redox potential. Hence, it is plausible that Kvβ1.1 is an essential player in relaying the inhibitory 

effects of increased NADH stress on cardiac repolarization. We therefore hypothesized that 
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Kvβ1.1 is an essential mediator for pyridine nucleotide changes in the heart. We tested this 

hypothesis by utilizing Kvβ1.1 knockout mice (KO) and assessed the physiological and 

biochemical consequences of pyridine nucleotide modulation.  

Material and Methods 

 Animals: Kvβ1.1 KO (global knockout) and WT mice (C57BL/6NJ) were obtained from 

Jackson Laboratories (Bar Harbor, ME, US) (141). Mice of 16-20 weeks of age were used and 

fed with food and water ad libitum. All animal work was approved in advance by the 

Institutional Animal Care and Use Committee at the University of South Florida (Tampa, FL, 

USA). Mice were genotyped to confirm the genetic deletion of Kvβ1.1 (Figure 11A).    

 

 Cardiomyocyte Isolation: Ventricular cardiomyocytes were isolated using an enzymatic 

dispersion technique. Briefly, hearts were cannulated and retrograde perfused with Ca2+-free 

isolation buffer containing (in mM; 117.3, NaCl, 5.3 KCl, 26.2 NaHCO3, 1 Na2HPO4, 20 

HEPES, 10 Taurine, 20 2,3-butanedione monoxime (BDM), 6 D-glucose, pH 7.4, for 5 min at 

37°C. The perfusate was then switched to isolation buffer containing 0.4 mg/mL Liberase 

Blendzyme 4 (Roche, Indianapolis, IN) and 20 μM CaCl2, and perfused for 10 min. Following 

digestion, the apex was excised and triturated in the Ca
2+

-free isolation buffer containing 1% 

bovine serum albumin (BSA). The resulting cell preparation was passed through ~297μm 

polypropylene mesh to remove tissue debris. Isolated myocytes were then washed in isolation 

buffer without BDM, while adding CaCl2 in increments of 0.2 mM at 5 min intervals to reach a 

final concentration of 1.2 mM. Cells were then utilized for electrophysiological recordings 

within 4-5 hrs. Cells were placed on glass coverslips and perfused with an external solution 
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containing (in mM) NaCl 135, KCl 5.4, CaCl2 1.8, MgCl2 1.1, HEPES 10, D-glucose 5.5, pH 

7.4 at room temperature.  

 

 Patch-clamp recording for isolated cardiomyocytes: Current clamp recordings were 

carried out on isolated cardiomyocytes using a perforated patch configuration. Isolated adult 

cardiomyocytes were plated on glass coverslips and allowed to rest in external solution for 10-30 

minutes. The external solution for recordings consisted of (in mM): NaCl 135, KCl 5.4, CaCl2 

1.8, MgCl2 1.1, HEPES 10 and D-Glucose 5.5, pH 7.4. Patch pipettes were fabricated from 

borosilicate glass, pulled to a resistance of 1-1.5 MΩ. The internal (patch pipette) solution 

consisted of (in mM): Aspartic acid 100, KCl 35, MgCl2 1.0, CaCl2 1.8, NaCl 4.5, EGTA 10, 

ATP 5, pH 7.2. Membrane potential traces were acquired at room temperature using an 

Axopatch-200B patch-clamp amplifier (Molecular Devices, Sunnyvale, CA) and pClamp 10 

software (Molecular Devices, Sunnyvale, CA). Electrical access to the cell was achieved through 

perforated-patch configuration using 240 μg/ml amphotericin B (0.1% DMSO), dissolved in the 

internal solution. Action potentials were evoked from the cells under current-clamp mode by 

applying 2 msec current pulses delivered at 1 Hz. Pulse amplitudes were 2x threshold levels (1-2 

nA). Membrane potentials were sampled at 10 kHz. Control action potentials were recorded for 1 

minute. Cells were then perfused with external solution containing 10 mM lactate for 5 min and 

action potentials evoked again and recorded for 1 minute using the same pulse parameters as 

described before. Data were exported and analyzed using the Peak Analysis Module of LabChart 

7.2 (AD Instruments, Colorado Springs, CO).  
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 Cell culture (COS-7) and transfection procedures: COS-7 cells were purchased from 

ATCC (Manassas, VA, USA). COS-7 cells are green-monkey kidney fibroblast cells and were 

cultured in 5% CO2 incubator (Thermo Fischer Scientific, IL, USA) using standard DMEM 

medium (Invitrogen) supplemented with 10% Fetal Bovine Serum (Invitrogen), and 1% 

penicillin and streptomycin antibiotics. For cDNA transfection experiments, the cells were 

transfected with 2-6µg of either mouse Kv4.2 alone or in combination with Kvβ1.1-GFP (Cat# 

MC206092, MG206299 Origene, MD, USA), at 70-80% confluence using Lipofectamine™ 

LTX transfection system (Invitrogen, NY, USA) (137). Cells were monitored for signs of 

toxicity every 24hr under an EVOS XL Core Light Microscope (AMG Bothell, WA). No 

detectable cell loss or change in cell morphology was observed in transfected group. After 48 

hours of transfection, cells were used for electrophysiological recordings. 

 

 Patch-clamp recording for transfected COS-7 cells: Whole-cell patch-clamp 

recordings were performed on COS-7 cells. Briefly, COS-7 cells transfected with Kv4.2 with or 

without Kvβ1.1-GFP plasmids were trypsinized (0.25%) and washed with serum free media just 

prior to plating on glass coverslips and allowed to rest in external solution consisting of (in mM): 

NaCl 135, KCl 5.4, MgCl2 1.1, CaCl2 1.8, HEPES 10 and Glucose 5.5 at pH 7.4 for 10-30 

minutes. Patch pipettes were fabricated from borosilicate glass, pulled to a resistance of 1-3 MΩ. 

The internal (patch pipette) solution consisted of (in mM): Aspartic acid 100, KCl 35, MgCl2 

1.0, CaCl2 1.8, NaCl 4.5, EGTA 10, ATP 5 at pH 7.2 with KOH. Axopatch-200B patch-clamp 

amplifier (Molecular Devices, Sunnyvale, CA) operated by pClamp 10 software (Molecular 

Devices, Sunnyvale, CA) were used to record membrane currents, which were analyzed and 

digitized with 12-bit resolution. Patch pipettes with 1–3 MΩ resistance were used to obtain GΩ 
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tight seals and membrane under the patch pipette was ruptured using negative pressure to achieve 

the whole-cell configuration. Whole cell currents were elicited by applying depolarizing voltage 

steps from −60 to +60 mV in 10 mV steps to the cells from a holding of −80 mV for 300 ms. The 

decay rates were determined by a single exponential fit to the inactivating phase of the current 

over (300ms) a range of voltages from 0 to +60mV. To analyze the current voltage relations the 

Ipeak was measured at different voltages (-60 to +60 mV) and plotted vs membrane potential. 

Voltage dependence of inactivation was measured by using the two-pulse protocol, from a 

holding potential of −80 mV, different test potentials from −120 to +60 mV in 10 mV steps, were 

applied for 300 msec. The steady-state inactivation curves were fit with a Boltzmann function.   

 

 Pull-down and Immunoblotting: To identify the interaction between Kvβ1.1 and Kv4.2 

in the heart, we conducted a pull-down assay using whole ventricular tissue lysate. Briefly, 5 μg 

of DDK-tagged Kvβ1.1 plasmid (Origene) was transiently expressed (48 to 72 hrs) in COS-7 

cells that were grown to 90% confluence in a 10 cm plate. Total cellular protein was extracted 

from Kvβ1.1-DDK expressing Cos-7 and mice ventricles by homogenization using extraction 

buffer containing (in mM) 50 mM Tris, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Nonidet P40 

(NP40) (ThermoScientific, USA) supplemented with 10 mM DDT, 1:100 protease inhibitor 

(Sigma-Aldrich, St. Louis, MO) and 1:100 protease inhibitor (sigma). Tissue lysate was then 

centrifuged at 10,000x g for 10 minutes at 4°C, and the supernatant was collected. Protein 

quantification was performed using Pierce 660 assay (Thermo Fisher Scientific, Waltham, MA). 

Approximately 200 μg of DDK-tagged Kvβ1.1 Cos-7 lysate was incubated with Anti-DDK 

Agarose beads (Origene) for 3 hrs at 4°C, and 500 μg of pre-cleared ventricular tissue lysate was 
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then added,  and incubated overnight at 4°C. Bound proteins were then eluted and immunoblot 

analysis was conducted using Kv4.2 antibody as explained before. 

 

 Electrocardiography: Mice were anesthetized with 2-3% isoflurane/oxygen anesthesia 

and lead–II electrocardiography (ECG) was recorded with Power lab (AD Instruments, UK) 

amplifier and data acquisition system, analysis was performed by using Labchart 7.2. The end of 

T wave is fixed at the point where the waveform returns to isoelectric line and ECG parameters 

including QTc were assessed as reported before (13, 129).  

 

 Monophasic action potentials: Monophasic action potentials (MAPs) were recorded 

from ex vivo heart preparations as reported before (13, 141). Mice were injected with 1 mg 

heparin (180 USP, sigma) and euthanized with Somnasol (50 mg/kg) by i.p. injection. Hearts 

were isolated through a bilateral thoracotomy and retrograde perfusion with Krebs-Hanseleit 

buffer (mM-  NaCl 119, NaHCO3 25, KCl 4, KH2PO4 1.2, MgCl2 1, CaCl2 1.8, D-glucose 10 and 

Sodium pyruvate 2, pH 7.4) was carried out at a constant flow rate of 2.0 ml/min, 37°C. 

Monophasic action potentials were recorded from left ventricular (LV) epicardial surface using 

contact electrode (Harvard Apparatus, MA). Hearts were stabilized for 10 minutes and MAP data 

were acquired using 8 channel PowerLab system (AD Instruments, UK). 

 

 Modulation of NADH alters monophasic action potential durations: MAPs were 

recorded from WT or KO mouse hearts to assess the activity in response to biochemical 

modulation of NADH (71). An increased NADH level in ex vivo heart tissue was accomplished 

by including 20 mM Sodium lactate in the Krebs-Hanseleit buffer. Baseline MAPs from LV 
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were acquired with normal buffer without lactate. Subsequently hearts were perfused for 20 min 

with a 20 mM lactate containing buffer and MAP’s were acquired using 8 channel PowerLab 

system (AD Instruments, UK). Increase in NADH levels by perfusion for 20 min with high 

lactate vs. no lactate added buffer was confirmed in WT hearts. Further, NADH levels were also 

assessed and compared between the WT and KO mice after lactate buffer perfusion for 20 min. 

 

 Pyridine nucleotide assay: Whole hearts from saline or ISO exposed WT and KO mice 

in addition to WT and KO hearts exposed with lactate were freeze clamped and stored at -80°C 

until analysis. Heart tissue was pulverized under liquid N2 in a mortar and pestle, and pyridine 

nucleotide; NADH/NAD
+
, ratio was assessed from 20 mg tissue of each sample by utilizing 

EnzyChrome NAD
+
/NADH kit (Bioassays, Hayward, CA) according to the manufacturer’s 

recommendations. Sample absorbance was measured at 560 nm using a 96-well plate reader 

(Biotek, VT, USA), and normalized to total protein level. Ratio of NADH/NAD
+
 were computed 

for all groups. 

 

 Quantitative Real-Time-PCR (qRT-PCR): Total RNA was isolated from left ventricles 

of hearts using the Exiqon miRCURY RNA Isolation kit (Exiqon, Woburn, MA) according to 

the manufactures protocol. Complimentary DNA from total RNA was synthesized and 

quantitative real-time PCR (qRT-PCR) analysis was performed for potassium channel subunit 

genes Kvβ1.2,  Kvβ1.3,  Kvβ2, and KCHIP2; potassium channel genes Kv4.2, 1.4, 1.5, sodium 

channel Nav1.5; and calcium regulators SERCA2, Calcineurin, PI3K, and PLB (Phospholamban) 

. The cDNA synthesis and qRT-PCR procedures were performed as described previously (103, 

141). The expression of mouse 18s was used as an internal control. 
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 Western Blots: Protein extracts from left ventricle (LV) of knock out (KO) and wild type 

(WT) mice hearts were isolated and quantified as described previously (13, 103) for Western blot 

analysis. Proteins were detected with a dilution of primary antibody as follows: 1:200 (Kv1.5), 

1:500 (Kvβ1.1) 1:1000 (Kv4.2), 1:10,000 (GAPDH). Primary antibodies Kv4.2 and GAPDH 

were obtained from Millipore (Darmstadt, Germany), Kv1.5 from Alomone (Jerusalem, Israel), 

Kvβ1.1 from Genetex (Irvine, CA, USA) and, Kvβ1.1 from Neuromab (Davis, CA, USA). 

Immunoblots were quantified using Image J software and mean (±SEM) values were plotted as 

bar diagrams. 

 

 Mouse model of cardiac hypertrophy: Age matched Kvβ1.1 KO and WT mice were 

infused with either saline or isoproterenol hydrochloride (ISO) (Sigma-Aldrich, MO, US) for 14 

days at a dose of (30mg/kg/day) using osmotic mini-pumps (Alzet, Durect; model 2002) 

according to the previously published report (147). Mice were anesthetized with 2.5% isoflurane 

(Butler Schein, OH, US); pumps were placed subcutaneously and monitored for 14 days. 

 

 Statistical Analysis: Statistical analyses were performed with Sigma Plot (v.11.0). When 

comparing two groups, an independent Student’s t-test was used. Data are expressed as mean ± 

SEM; and p≤0.05 were considered significant.   
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Results 

 Kv4.2 interaction with Kvβ1.1:  

 We utilized KO mice that lack the Kvβ1.1 subunit by the insertion of a PGKneobpA/neo 

cassette in the first exon, which is responsible for coding Kvβ1.1 splice isoform (32) (Figure 

11A). As shown in Figure 11B, Western blot confirmed the expression of Kvβ1.1 protein in the 

wild type mouse heart, however the Kvβ1.1 KO mouse showed the absence of Kvβ1.1 

expression. COS-7 cells transfected with Kvβ1.1 tagged with DDK were utilized for pull-down 

assays. The Kvβ1.1-DDK was incubated with cardiac homogenate and DDK-coated agarose 

beads overnight, precipitates were resolved using gel electrophoresis and immunoblotted with 

Kv4.2 antibody. As shown in Figure 11C, Kvβ1.1 pulls-down Kv4.2 from mouse heart lysates 

demonstrating protein-protein interaction and binding. To confirm that DDK beads successfully 

bind to Kvβ1.1 with specificity, COS-7 lysates overexpressing Kvβ1.1-DDK plasmid were 

pulled down with DDK-coated agarose beads alone, and immunoblotted with anti-DDK 

antibody, which demonstrates Kvβ1.1-DDK expression as well as no significant band in COS-7 

alone (Figure 11D). 

 

 Kvβ1.1 KO hearts demonstrate similar physical dimensions: 

 Whole heart sections of both WT and KO mice demonstrate comparable morphometric 

measurements including the right ventricle (RV), left ventricle (LV) and septum (SEP) (Figure 

12A). Overall, area measurements from the cross-sections demonstrate no significant difference 

(Figure 12B). Heart weights normalized to tibia length also demonstrated similar weights in both 

WT and KO mice (Figure 12C).  
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 Kv4.2 inactivation decay (tau) in the presence of Kvβ1.1 and lactate: 

 We utilized COS-7 cells transfected with mKv4.2 with and without mKvβ1.1-GFP and 

perfused with 10 mM lactate solution to increase the intracellular NADH levels. Kv4.2 alone 

with and without lactate demonstrated no significant differences in overall current kinetics 

(Figure 13A and 13C) as well as in time constants (Figure 13E) at voltages -20 to +60 mV. At 

baseline with no lactate exposure, Kv4.2+Kvβ1.1 demonstrated no significant current kinetics 

compared with Kv4.2 currents (Figure 13A and 13B). However, only in the presence of Kvβ1.1, 

the addition of lactate resulted in a significant decrease in inactivation time constants at voltages 

of -20 to +60mV (Figure 13D and 13F). However, inactivation time constants were not 

significantly different between Kv4.2 alone and Kv4.2+Kvβ1.1 groups, with or with lactate 

addition. 

 

 Current voltage relationship of Kv4.2 in the presence of Kvβ1.1 and modulation by 

lactate: 

 Analysis of current voltage (I-V) relationship of Kv4.2 exhibits an increase in current 

with channel activation at -20 mV, both before and after lactate exposure. The I-V curves were 

similar in Kv4.2+Kvβ1.1 group, and addition of lactate caused no additional differences (Figure 

14A and 14B). For the steady state inactivation measurements recorded by using the two-pulse 

protocol (Figure 14) the I-V curves showed a steep decrease in the inactivation profile in both 

Kv4.2 alone and +lactate with a small non-significant hyperpolarization shift (p>0.05 at -40mV). 

The V1/2 of inactivation demonstrated that there was no significant difference between Kv4.2 

alone and with the addition of lactate (-50.2 ± 3.1 mV and -52.3 ± 1.8 mV, p = 0.442). While 
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Kv4.2 + Kvβ1.1 demonstrated a significant hyperpolarizing shift with addition of lactate, a V1/2 

of inactivation (-48.3 ± 1.1 mV and -58.6 ± 0. 9 mV, p = 0.01) (Figure 14D). Kv4.2 alone and  

Kv4.2 + Kvβ1.1 demonstrated no significant hyper polarizing shift. These data suggest that the 

addition of lactate causes an increase in the Kvβ1.1 mediated hyperpolarization shift in Kv4.2 

currents.  

 

 Isolated cardiomyocyte action potentials: 

 Left ventricular apex adult cardiomyocytes were isolated from the hearts of 16-20 weeks 

WT and KO mice and subjected to current-clamp recordings. Baseline action potential’s were 

recorded after which external buffer was switched to a buffer containing lactate (10mM) and 

allowed to perfuse for 10 minutes. WT cardiomyocytes demonstrated significant increases in the 

action potential durations at APD 20 and 50% (p<0.05) repolarization along with an increase at 

APD 70 (p<0.1) after exposure with 10 mM lactate (Figure 15C-E). However, KO myocytes 

demonstrated no significant difference in APD durations (APD20-70) after lactate exposure 

compared with no lactate (Figure 15C-E). Action potential durations between WT and KO 

myocytes at baseline or (-) lactate demonstrated a significant increase in KO at APD 20, however 

while increased at APD 50 an 70 they were not significantly different from WT. These data 

suggest that by increasing the intracellular NADH levels by lactate perfusion, the action potential 

duration is significantly prolonged. However in the Kvβ1.1 KO cardiomyocyte the increase in 

NADH by lactate fails to prolong the APD suggesting a significant role for Kvβ1.1 in cardiac 

action potential regulation under high intracellular NADH levels.  
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Changes in monophasic action potential (MAP) in lactate perfused hearts:  

 Ex vivo MAP traces were recorded from WT and KO hearts before and after lactate 

perfusion with a modified Kreb’s-Hanseleit buffer consisting of 1mM pyruvate and 20 mM 

lactate (Figure 16A and Figure 16B). MAP waveforms show typical triangular peaks with a 

rapid depolarization upstroke followed by a downward spike representing repolarization activity. 

Analysis of MAP durations (ms) at APD 20, 50, and 70% repolarization demonstrated significant 

prolongation in the WT hearts after 10 minutes of lactate perfusion (Figure 16C-E). No 

significant prolongation was noted in KO hearts after 10 minutes of lactate exposure (Figure 

16C-E). KO mouse hearts showed APD prolongation at baseline as compared to WT hearts 

(Figure 16C-E). The addition of lactate to the ex vivo WT and KO hearts demonstrated 

significant increases in NADH (µM/µg) after lactate exposure (Figure 16F). To determine that 

lactate alterations are caused by the increase in NADH and not as a result of non-specific effects, 

we utilized pyruvate in the buffer and perfused WT hearts as a rescue strategy. After 10 minutes 

of pyruvate perfusion, the APDs returned to levels similar to baseline (Figure 16G). Heart rate 

of WT and KO hearts at baseline or (-) lactate recordings demonstrated no significant difference 

indicating that changes observed to AP’s were not due to heart rate variation (Figure 16H). 

These results indicate that lactate perfusion leads to cardiac NADH increase and prolongation in 

action potential duration in wild type mouse hearts, but not KO hearts. Hence, it is plausible that 

the repolarization phase can be altered by modulation of NADH levels and that the Kvβ1.1 

subunit is a key sensory component to relay the NADH alterations.  
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 Changes in monophasic action potentials in ISO-infused hearts:  

 Chronic ISO-infusion causes cardiac hypertrophy. We recorded MAPs from saline or ISO 

infused WT and KO mice hearts (Figure 17A and 17B). Analysis of MAP traces demonstrates 

that chronic ISO exposure of WT mice prolongs cardiac APDs. As shown in Figure 17C-E, ISO 

treatment of WT mice led to a significant prolongation of APD20, 50, and 70, when compared 

with that of saline (Figure 17C-E). Contrarily, no significant differences were observed in the 

APDs of saline vs. ISO exposed KO mice at APD20, 50, and 70 (Figure 17C-E). Previous 

reports suggest that remodeling associated with cardiac hypertrophy also results in a significant 

shift in NADH/NAD
+
 levels. Hence, we reasoned that elevated NADH may reduce 

NADH/NAD
+
 ratio, and contribute to the APD prolongation seen in WT mouse hearts. Indeed 

Infusion of ISO resulted to a significant increase in cardiac NADH/NAD
+
 ratios in both WT and 

KO mice (Figure 17F). These results suggest that NADH elevation can lead to APD 

prolongation, and that Kvβ1.1 subunit is essential to electrical signaling.   

 

 ECG activity in ISO-infused Kvβ1.1 KO hearts: 

 To evaluate the electrical activity in the mice, we utilized lead II ECG recordings. The 

WT and KO mice were exposed to either saline or ISO and ECG recordings were obtained on 

day 14 (Figure 18A). The PR interval along with the P duration demonstrates a significant 

decrease in KO saline (baseline) compared with WT controls. P-duration in both WT-ISO and 

KO-ISO were significantly increased from their respective controls (Figure 18E). 

  WT-ISO mice demonstrated significantly increased QTc and JT intervals compared with the 

saline group, suggesting a decreased repolarization reserve after ISO infusion (Figure 18F and 

18G). The QTc and JT interval in the KO-Saline and KO-ISO mice remain unchanged indicating 
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that electrical activity was unaltered with isoproterenol infusion (Figure 18F and 18G). The 

mice showed a significant QTc and JT interval prolongation at baseline between WT and KO 

mice (Figure 18F and 18G). QRS intervals remained unaltered in all groups (Figure 18H) ECG 

data clearly validate the notion that isoproterenol induced QT prolongation is attenuated in the 

KO compared with WT. 

 

 Cardiac ion channel expression: 

 To gain insights into the transcriptional status of key Kv channels in Kvβ1.1 KO hearts, 

qRT-PCR assay was used to assess the expression of Kv channel subunit genes including 

Kvβ1.2, Kvβ1.3, Kvβ2 and, KChIP2, which showed no significant differences between WT and 

KO hearts (Figure 19A). Also, key ion channels known to interact with Kvβ1.1 including Kv4.2, 

Kv1.4, Kv1.5 as well as ion channels affected by pyridine nucleotides; Nav1.5, were also 

assayed, which revealed no significant differences between WT and KO hearts (Figure 19B) 

(71). Furthermore, expression of key mediators of calcium signaling including SERCA2, 

Calcineurin, PI3K, and, Phospholamban (PLB) was found to be comparable in the WT and KO 

hearts (Fig. 10C). These results suggest that the electrical changes observed are therefore likely 

caused by kinetic alterations as opposed to gene expression changes. Whole hearts were 

homogenized and membrane extracts separated for Western blot analysis of Kv4.2 and Kv1.5 

expression revealing no significant difference between WT and KO membrane fractions (Figure 

19D and 19E). 

 

Discussion 

In the present study, we identified that Kvβ1.1 is a major physiological regulator in the heart. 

Modulation of pyridine nucleotides is sensed by the Kvβ1.1 subunit and helps relay the 
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biochemical information for regulating the electrical activity. We identified that the cellular 

action potential is modified with the addition of lactate and regulated by the presence of Kvβ1.1.  

The basal tonic regulation of action potential is tightly coupled to the ion channel function via 

Kv4.2, through which the action potential is significantly regulated. Identification of increased 

intracellular NADH levels via perfusion of lactate was utilized as a model to probe its effects on 

action potential and Kv current changes (71). In presence of Kvβ1.1 subunit, using the WT 

cardiomyocytes, we identified that the action potential is prolonged upon NADH increase, and 

lack of Kvβ1.1 subunit significantly diminished the modulatory role of NADH on the action 

potential. These experiments for the first time clearly demonstrate that Kvβ1.1 is necessary for 

regulation of basal action potential duration as well as imparts the ability to sense the changes in 

the pyridine nucleotides in the cardiomyocytes in a precise fashion.  

Previous studies identified that Kvβ subunit belongs to the aldoketo reductase superfamily. The 

Kvβ1 belongs to the AKR6 family and depict very tight binding to NADH/NAD
+
. Crystal 

structure analysis revealed that NADP
+
 is very tightly bound to the Kvβ subunit and co-

crystallizes with the Kvβ protein (40). Affinity studies performed to identify the dissociation 

constant (Kd) showed that that the affinity is in the micro molar range (72, 138). Therefore, the 

fundamental information for the binding characteristics and ion channel modulation were 

previously published, however, the physiological roles of Kvβ subunits remain unknown. In the 

present study we connect the biochemical basis and the ion channel physiology to cardiac 

electrical activity. Based on the biochemical changes caused by modulation of NADH/NAD
+
, the 

Kv current is regulated by Kvβ1.1 subunit in a subtle but significant manner and  that these 

connections ultimately lead to action potential and ECG changes in the mice heart.  
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While cardiac action potential is an ensemble of many ionic currents (K, Na, Ca) and its activity 

during depolarization and repolarization depend on many ion channels (38). The role of Kvβ1.1 

seems to be tightly coupled to Kv current modulation affecting the repolarization in the presence 

of NADH/NAD
+
. Previously, we identified that Kv current is modulated by Kvβ subunits in the 

presence of oxidized (NAD
+
/NADP

+
) and reduced pyridine nucleotides (NADH/NADPH) (137-

139). Under reducing (NADH) conditions, the Kv current inactivation was supported while the 

addition of oxidized pyridine nucleotides (NAD
+
) provided Kv current activation. These studies 

form the experimental basis for testing the physiological roles of Kvβ1.1 in the heart. Using 

heterologous COS-7 expression system, we co-expressed Kv4.2 along with the Kvβ1.1 subunit 

to identify the influence of NADH via lactate perfusion. As noted previously with Kv1.5+Kvβ1 

pairing, we found that Kvβ1.1 produces a faster inactivation tau with Kv4.2 in the presence of 

NADH. Further, we demonstrated that steady-state inactivation of Kv4.2 was significantly 

shifted to a more hyperpolarized state by Kvβ1.1in the presence of elevated NADH.   

The ex vivo MAPs show that action potentials were significantly prolonged in wild type hearts 

upon addition of lactate, whereas the action potential prolongation was completely reversed with 

the addition of pyruvate, which is a known energy substrate that can restore the intracellular 

levels of NAD
+
, clearly identifying the role of NADH/NAD in cardiac electrical activity. 

Moreover, the lack of Kvβ1.1 subunit failed to impart the ability of heart to respond to 

NADH/NAD changes, pointing to the importance of the Kvβ1.1 subunit in cardiac physiology 

both at the cellular and tissue level. We next asked the physiological significance of Kvβ1.1 in 

cardiac physiology in regard to ECG changes and if Kvβ1.1 has a physiological role in terms of 

modulating ECG. To test this, we utilized the Kvβ1.1 knockout mice and recorded ECG from 

wild type and KO mice and identified that lack of Kvβ1.1 subunit leads to prolonged QTc and JT 
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interval in 16 - 20 week old mice. The QTc is a standard measure of cardiac ventricular 

depolarization and repolarization activity, providing the ability to delineate the contribution of 

Kvβ1.1 to ECG changes (113). Further the KO mice demonstrated a significant decrease in P-

duration and PR interval compared with WT mice. P-duration and PR interval changes have 

demonstrated pro-arrhythmic phenotypes (68). While the significant decrease in PR duration in 

KO has yet to be defined, quantitative trait loci mapping demonstrated that chromosome 3 

influences the variance of the PR interval, interestingly Kvβ1.1 (KCNAB1) is found on 

chromosome 3 (126). A significant increase in P duration in WT and KO after ISO exposure has 

been previous demonstrated in hypertrophic models (120, 132). These data demonstrate a 

significant physiological role for Kvβ1.1 subunit in the heart in which coupling of Kvβ1.1 

subunit to the Kv channel can significantly alter the cardiac action potential and ECG 

parameters. We further investigated the role of Kvβ1.1 subunit in the physiological changes in 

cardiac NADH/NAD levels. For this we utilized the well-established cardiac hypertrophy model 

by infusing isoproterenol for 14 days in wild type or KO mice. Hypertrophy and injury caused by 

ISO infusion has been shown to cause prolongation of QTc (135), and monophasic action 

potentials (MAP) (33) as well as a significant decrease in Kv4.2 and 4.3 current (100). While 

hypertrophy can result in significant cardiac alterations including the increase in PKA which 

regulates many regulatory proteins in cardiac contraction-relaxation cycle such as ryanodine 

receptor 2, and L-type Ca channels it is important to note that QRS interval was not altered after 

ISO exposure in either WT or KO mice (142). In addition, numerous hypertrophic research has 

demonstrated that L-type calcium currents remained unchanged (56). Furthermore, preliminary 

evidence demonstrates that reduced Ito density represents a very early event in response to 
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decreased pump performance (76, 150). Therefore, decreased Ito appears to be a significant 

contributor to action potential prolongation in cardiac hypertrophy (150).  

Isoproterenol perfusion caused a significant increase in cardiac NADH/NAD ratio levels leading 

to prolonged QTc intervals in the wild type mice; however the KO mice lacking the Kvβ1.1 

subunit failed to respond to the NADH/NAD ratio increase caused by cardiac hypertrophy. The 

cardiac lead II ECG signal allows monitoring the left ventricular activity in a precise manner. 

The QTc is a standard measure of cardiac ventricular depolarization and repolarization activity, 

providing the ability to delineate the contribution of Kvβ1.1 to ECG changes in the presence of 

NADH (113). Since the KO mice failed to demonstrate further prolongation in the QTc with ISO 

treatment, it is likely that the NADH generated due to hypertrophic response is not sensed and 

hence NADH induced QTc prolongation was abolished in the KO mice. Therefore, based on 

cellular model using Kv4.2+Kvβ1.1 expression system, cardiomyocyte action potential, and 

tissue ex vivo action potentials, we identified and established the physiological responses of heart 

in the presence and absence of Kvβ1.1 subunit for its ability to sense change in NADH/NAD 

levels. Overall, these changes point to the idea that because Kvβ1.1 is an obligatory mediator for 

sensing NADH/NAD changes in the heart, it is likely that ECG changes caused by cardiac 

hypertrophy are due to high NADH levels and presence of Kvβ1.1 allows the heart to sense the 

pyridine nucleotide changes.  

Heterologous expression studies using xenopus oocytes or mammalian expression system 

established that Kvβ1 could bind to multiple Kv channel partners (60, 112, 127). Rat heart 

studies identified that Kvβ1.1 binds Kv1.5, while other studies showed that Kvβ1.1 binds to Kv4 

channel (108, 156). Co-immunoprecipitation in mouse heart revealed that Kvβ1.1 binds with 

Kv4.2 and is likely a preferential binding partner in the mouse heart (2). By using the pull down 
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approach in the present study, we identify the binding of Kvβ1.1 with Kv4.2, which is in 

agreement with previous report (2). Triggered arrhythmia is a significant feature in determining 

the role of specific ion channels or its regulatory subunits. To identify the arrhythmogenic 

potential of Kvβ1.1 we utilized WT or KO hearts and subjected to S1S2 protocol and identified 

that 2 out of 5 hearts show sustained arrhythmia in KO mice pointing towards the contribution of 

Kvβ1.1 and its role in regulating action potential basis. Therefore based on the triggered 

arrhythmogenic basis the lack of Kvβ1.1 leads to increased arrhythmia susceptibility implicating 

a physiological role for Kvβ1.1 in the heart. Overall, these studies provide a strong basis that 

Kvβ1.1 can bind to Kv4.2 and other Kv channels, and therefore likely contributes to the cardiac 

electrical activity in a physiologically significantly manner.  

 

 Conclusions 

 Overall in the present study we demonstrate that Kvβ1.1 subunit offers sensing of 

changes in NADH/NAD in the heart. The modulation of Kv4.2 currents in the presence and 

absence of Kvβ1.1 under increased NADH levels points towards the ability of Kvβ1.1 subunit to 

mediate inactivation of Kv4.2 currents. The changes in action potential duration and contribution 

of Kvβ1.1 in cardiomyocyte and ex vivo hearts identify the specific roles of Kvβ1.1 mediation in 

sensing NADH changes under both cellular and ex vivo settings. In addition, the in vivo changes 

at ECG level using the cardiac hypertrophy model causing increased intracellular NADH levels 

clearly shows that the electrical activity and changes to NADH increase are mediated by Kvβ1.1 

subunit since the KO mice failed to respond to hypertrophic stimulation. Taken together, the 

physiological changes and the biochemical basis provide novel mechanistic insights with distinct 

Kvβ subunit mediated responses in cardiovascular physiology.  
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Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Kvβ1.1 and Kv4.2 interaction A. Genotype of WT and KO mice. PCR product 

separated by gel electrophoresis for identifying wild type (WT) at 210 bp and knockout (KO) at 

320 bp. B. WT and KO heart homogenates. Primary antibody was Kvβ1.1 (1:200). C. WT heart 

homogenate (first lane), COS-7 cells transiently transfected with Kvβ1.1-DDK (second lane), were 

combined and incubated with DDK coated agarose beads overnight (third lane). Primary antibody 

was Kv4.2 (1:500). D. COS-7 cells transfected with Kvβ1.1-DDK (first lane) and incubated 

overnight with DDK coated agarose beads (second lane) while untransfected COS-7 cells showing 

no DDK band (third lane). Primary antibody was DDK (1:200).  
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Figure 12: Physical parameters of the Kvβ1.1 knockout heart A. Twenty five micron (µm) cross-

sections of heart stained with H&E for identifying the differences in shape and size, regions labeled 

as LV (left ventricle), RV (right ventricle), and, SEP (septum). B. Total H&E cross-sectional area 

(arbitrary units, A.U) of the heart quantified and compared between WT and KO mice. The data 

represented are mean ± SEM (n=3 hearts). C. Normalized heart weights by tibia length of both wild 

type (WT) and knockout (KO) mice. The data represented are mean ± SEM (n=10 mice). 
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Figure 13: COS-7 cells transfected with Kv4.2 demonstrate redox (NADH/NAD) dependent alterations in the 

presence of Kvβ1.1 A. Current traces from representative COS-7 cells transfected with Kv4.2 alone. B.  Kv4.2 

with Kvβ1.1. Inset of NADH (µM/µg) levels with 10mM lactate exposure. The data represented are mean ± SEM 

(n=3 hearts) * represents p<0.05 C. Kv4.2 alone with lactate (10mM) exposure. D. Kv4.2 and Kvβ1.1 with lactate 

(10 mM) exposure; the voltage template is shown in Kv4.2 baseline. Overlay Inset currents of baseline (black) and 

lactate (red) are shown at +40mV.  
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E. The time constant of decay demonstrates no significant difference between Kv4.2 with and 

without lactate exposure. The data represented are mean ± SEM (n=10 cells in each group). F. 

Time constant (tau) of decay demonstrates significant decrease in Kv4.2 with Kvβ1.1 in the 

presence of lactate exposure. The data represented are mean ± SEM (n=10 cells in each group) * 

represents p<0.05 

E.

F.
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Figure 14: COS-7 cells transfected with Kv4.2 demonstrate alterations in inactivation in the 

presence of Kvβ1.1 and lactate A. Normalized current curve for Kv4.2 with and without lactate 

demonstrate no significant difference in activation. The data represented are mean ± SEM (n=10 

cells in each group). B. Normalized current curve for Kv4.2+Kvβ1.1 with and without lactate 

demonstrate no significant difference in activation. The voltage dependence of activation was 

determined by normalizing outward currents at indicated voltages to +50 mV. The data represented 

are mean ± SEM (n=10 cells in each group). The voltage template is shown in Kv4.2 and Kvβ1.1 

baseline. C. Normalized current curve for Kv4.2 with and without lactate demonstrate no 

significant difference in the steady-state inactivation curve. The data represented are mean ± SEM 

(n=10 cells in each group). D. Normalized current curve for Kv4.2+Kvβ1.1 with and without 

lactate demonstrate a significant hyperpolarizing shift in the presence of lactate. The voltage 

dependence of inactivation was determined by normalizing outward currents at indicated voltages 

to -110 mV. The data represented are mean ± SEM (n=10 cells in each group). The voltage 

template is shown in Kv4.2 and Kvβ1.1 lactate. 

 

A. B.

C. D.

+60

-80mV
300 ms

-60

 



www.manaraa.com

68 
 

 

 

Figure 15: Isolated cardiomyocyte Action Potentials (AP). A. Representative AP traces from a 

single cell isolated from a WT mouse heart recorded in the absence (Baseline, black line) and presence 

of 10 mM lactate (Lactate, red line) in the external solution. B. Representative action potentials from a 

single cell isolated from a KO mouse heart recorded in the absence (Baseline, black line) and presence 

of 10 mM lactate (Lactate, red line) in the external solution. Action potentials were evoked from the 

cells under current-clamp mode by applying 2 msec current pulses delivered at 1 Hz. Representative 

AP traces have been edited to remove the stimulation artifact. C. Action potential durations (APDs) at 

20% (APD 20) repolarization (-) lactate (white bar) and (+) lactate exposure (red bar) in WT mice and 

(-) lactate (grey bar) and (+) lactate (pink bar) in KO mice. D. Action potential durations (APDs) at 

50% (APD 50) repolarization (-) lactate (white bar) and (+) lactate exposure (red bar) in WT mice and 

(-) lactate (grey bar) and (+) lactate (pink bar) in KO mice. E. Action potential durations (APDs) at 

70% (APD 70) repolarization (-) lactate (white bar) and (+) lactate exposure (red bar) in WT mice and 

(-) lactate (grey bar) and (+) lactate (pink bar) in KO mice. The data represented are mean± SEM 

(n=7-9 cells in each group). Scale bars = 10 ms, *represents p ≤ 0.05. 
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Figure 16: Pyridine nucleotide modulation alters Monophasic Action Potentials (MAPs) A. 

Representative monophasic action potential trace from a WT mouse heart recorded in the absence ((-) 

Lactate, black line) and presence of 20 mM lactate ((+) Lactate, red line) in the external solution. B. 

Representative MAP trace from a KO mouse heart recorded in the absence ((-) Lactate, black line) 

and presence of 20 mM lactate ((+) Lactate, red line) in the external solution. C. LV surface MAP 

durations at 20% (APD 20) in WT (+) lactate demonstrated a significant increase in duration, while 

KO group MAPs were indistinguishable. D. LV surface MAPs at 50% (APD 50) in WT (+) lactate 

demonstrated a significant increase in duration, while KO group action potentials were 

indistinguishable. E. LV surface MAPS at 70% (APD 70) in WT (+) lactate demonstrated a 

significant increase in duration, while KO group MAPs were indistinguishable. The data represented 

are mean ± SEM (n=7-10), * represents p<0.05 (-) lactate vs. (+) lactate and WT (-) lactate vs. KO (-) 

lactate. F. Relative NADH levels were examined in hearts after lactate-perfusion from WT or KO 

when compared with WT hearts perfused with no lactate (Control), n=4, *p<0.05, compared with 

control. Bar represents 10 ms scale. G. LV surface action potentials at APD 70 in WT (-) lactate, (+) 

lactate, (+) pyruvate demonstrated a significant increase in duration (lactate) and then a significant 

reduction in duration (pyruvate). The data represented are mean ± SEM (n=6), * represents p<0.05 

lactate vs. baseline, # represents p<0.05 lactate vs. pyruvate. H. Heart rate from LV surface action 

potentials, data represented are mean ± SEM (n=7-10). 
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Figure 17: Monophasic Action Potential (MAPs) changes in isoproterenol treated mouse hearts: 

A. Representative MAP traces from a WT mouse heart infused (osmotic mini pumps) with saline 

(black line) and Isoproterenol (red line). B. Representative MAP traces from a KO mouse heart 

infused (osmotic mini pumps) with saline (black line) and Isoproterenol (red line). C. LV surface 

MAPs at 20% repolarization (APD 20) in WT ISO demonstrated a significant increase in duration, 

while KO-ISO MAPs were indistinguishable from KO-Saline. D. LV surface MAP at 50% 

repolarization (APD 50) in WT ISO demonstrated a significant increase in duration, while KO-ISO 

MAPS were indistinguishable from KO-Saline. E. LV surface MAPs at 70% repolarization (APD 70) 

in WT ISO demonstrated a significant increase in duration, while KO-ISO action potentials were 

indistinguishable from KO-Saline. The data represented are mean ± SEM (n=7), * represents p<0.05 

ISO vs. saline. F. NADH/NAD ratio of WT and KO hearts from saline or ISO. Both WT and KO-ISO 

hearts showed a significant increase in NADH/NAD ratios. Bars represent mean ± SEM (n=4), 

*p<0.05 ISO vs. saline and WT saline vs. KO saline.  
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Figure 18: ECG Parameters. A. Representative lead II ECG traces from anesthetized mice after 

saline or ISO infusion of WT (Saline (black line) and ISO (red line)) and KO (Saline (black line) and 

ISO (red line)) scale bar represents 10ms. B. A representative mouse ECG diagram on different ECG 

parameters measured. C. Heart rates in WT and KO groups, the data represented are mean ± SEM 

(n=10-12). D. PR interval durations in WT and KO groups. The data represented are mean ± SEM 

(n=10-12), *p<0.05 WT saline vs. KO saline. E. P durations in WT and KO groups. The data 

represented are mean ± SEM (n=10-12), *p<0.05 ISO vs. saline as well as KO vs. WT saline’s. F. 

QTc interval durations in WT and KO groups. The data represented are mean ± SEM (n=10-12), 

*p<0.05 ISO vs. saline as well as KO vs. WT saline’s. G. JT interval durations in WT and KO 

groups. The data represented are mean ± SEM (n=10-12), *p<0.05 ISO vs. saline as well as KO vs. 

WT saline’s. H. QRS interval durations in WT and KO groups. The data represented are mean ± 

SEM (n=10-12).  
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Figure 19: Gene expression.  A. mRNAexpression of auxiliary subunits including Kvβ1.2 Kvβ1.3, 

Kvβ2, KCHIP2 the data represented are mean ± SEM (n=3). B. Gene expression of key cardiac 

channels including Kv4.2 Kv1.4, Kv1.5, Nav1.5 the data represented are mean ± SEM (n=3). C. Gene 

expression of key calcium regulators SERCA2, Calcineurin, PI3K, PLB (Phospholambin) the data 

represented are mean ± SEM (n=3). D. Protein expression of key Kv channels in the heart; Kv4.2 and 

Kv1.5 demonstrating no significant difference in membrane expression between wildtype (WT) and 

knockout (KO). E. The data represented are mean ± SEM (n=3).  
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CHAPTER FOUR: 

Conclusion 

Discussion  

The Kvβ1.1 subunit demonstrates a unique ability to impart modulation on multiple Kv 

channels, this regulation on Kv channels particularly those found within the cardiovascular 

system impart profound physiological changes. In the absence of the Kvβ1.1 subunit both male 

and female mice demonstrate a significant increase in QTc duration as well as in action potential 

durations measured by monophasic action potential recordings of surface potential. These 

electrical measurements of the heart are equivalent to the measuring of the “repolarization 

reserve” a term given to emphasize the redundancy of multiple K
+
 channels working to return the 

membrane potential to its resting rate a key component in the cardiac action potential (118). 

Often when this reserve is shortened significantly consequences can occur which include but are 

not limited to arrhythmias, early after depolarization’s (EAD’s) and, sudden cardiac death as 

well as exacerbating drug-induced arrhythmias. The Kvβ1.1 subunit in this work not only plays a 

significant role in the heart, its strong presence is also noted within the vascular system including 

the aorta (28). Fergus et al. found that the overall expression of Kvβ1.1 in the bovine aorta was 

almost double the amount when compared to other Kvβ subunits and other Kv channel 

chaperones. Indeed, one of the key repolarizing Kv currents found in the aorta, Kv1.5 an α-

subunit demonstrated to interact and bind with Kvβ1.1 (137). These electrical changes noted in 
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the absence of Kvβ1.1 showed no alterations in key Kv channels thus demonstrating the change 

is solely from Kvβ1.1. (Figure 7 & 16) These alterations may be caused by Kv channel 

dysfunction and or gating abnormalities but this is due solely to the Kvβ1.1 absence. 

 While Kvβ1.1 is found in both male and female mice a significant increase in RNA was 

noted in females compared with males (Figure 9). This large increase in overall expression 

levels of Kvβ1.1 in WT females may be one explanation as to why vascular changes such as the 

significant increase in systolic and diastolic blood pressure were only noted in female mice. 

While blood pressure increased in KO male mice compared with their WT controls it was only 

KO female mice which demonstrated significant increases as well as increased aortic flow rates 

and an overall size increase in the heart. This physiological alteration in heart size may be in part 

due to the altered vascular parameters including increased blood pressure along with increased 

aortic flow rates. In addition, this work also demonstrated the interaction of Kvβ1.1 to MHCα or 

MYH6 the myosin heavy chain 6 protein one of the key myosin’s found within the heart. These 

findings are in similar line with a previous study that highlighted the binding of Kvβ1 to actin 

and α-actinin (88). Recently, Kvβ2 protein was demonstrated to interact with ProSAP2 and 

Shank3 two proteins responsible for the neuronal structure of neurons thus highlighting that Kvβ 

proteins may play a role cell structure or the placement of ion channels (114). During 

pathophysiological forms of cardiac hypertrophy it is often demonstrated that a significant 

decrease is noted in MHCα with a significant increase in MHCβ (MYH7) (6). While no such 

trend was observed in these female mice it is plausible that a physiological form of cardiac 

hypertrophy is occurring however, more evidence is needed. In the absence of Kvβ1.1 a unique 

ability to impart physiological change within murine models is presented. Lack of Kvβ1.1 

resulted in altered cardiac physiology including the prolongation of action potentials and the 
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overall shortening of the repolarization reserve as well as prolonged QTc durations. In addition, 

the vascular system was altered including increases in the aortic flow rate as well as blood 

pressure seen exclusively in female mice only.  

Kvβ1.1 demonstrates not only an effect on the cardiovascular physiology when genetically 

deleted but can also impart electrical modulation by the manipulation of pyridine nucleotides 

including NAD and NADH. Kvβ1.1 belongs to the aldo-keto reductase family (AKR6A1) with 

the ability to bind pyridine nucleotides with high affinity. Indeed, as discussed earlier the first 

crystal structure of the Kvβ(2) subunits presented with an NADP molecule still bound. The 

modulation that occurs on the α-subunit by Kvβ is altered by which nucleotides are bound; the 

reduced forms (NADH/NADPH) or the oxidized forms (NAD/NADP). Previously demonstrated 

literature shows that when reduced forms are bound (NADH/NADPH) Kv channel inactivation is 

heavily favored. This was clearly demonstrated by Tipparaju et al in when Kv1.5 was expressed 

with and without Kvβ1.3 (human-mouse Kvβ1.1) in the presence of varying concentrations of 

NADH and NAD (137, 138). The injection of NADH into the cell transfected with Kv1.5 a 

normally non-inactivating current demonstrated greater inactivation including a significant 

decrease in tau values. While, the addition of NAD caused the Kv1.5 channel to remain open, 

thus abolishing inactivation. This gating phenomenon has been documented in multiple 

heterologous examples involving different Kv channels including Kv1.1 and Kv1.4 (98, 99). 

Pyridine nucleotide changes in the form of physiologically relevant concentrations continued the 

Kv channel modulation in the presence of a hypoxic nucleotide mix (favoring NADH/NADPH) 

which demonstrated again faster inactivation to otherwise non-inactivating channels (Kv1.5) 

(137).  
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 While heterologous models provided the fundamental understanding of how Kvβ1.1 can 

impart modulation on multiple Kv channels a physiological or in vivo example still remained 

unknown. Many cardiac diseases including cardiac hypertrophy, myocardial ischemia, and the 

failing heart all demonstrate different etiologies however, one common trend in all was the 

significant increase in NADH levels within cardiac tissue(43, 70). One possible explanation is 

the metabolic switch from a fatty acid oxidation energy process to favoring a glycolytic 

requirement in cardiomyoctes. Traditionally in healthy cardiomyocytes fatty acid oxidation 

provides the overall energy requirements for the cell, however during times of great stress (such 

as myocardial ischemia) the myocytes begin to switch to rely more heavily upon the glycolytic 

pathway (69). This switch ultimately leads to an increase in pyruvate and subsequently an 

increase in cytosolic NADH levels. In addition, cardiac stress also leads to increased 

mitochondrial stress which can increase NADH levels (70). Therefore, cardiac stress leads to an 

accumulation of NADH and it is this increase that the Kvβ1.1 subunit senses and thus modulates 

subsequent α-subunits.  

 The addition of sodium lactate to the isolated heart has been one accepted model to 

increase intracellular concentrations of NADH, with the accumulation of lactate in the 

cardiomyocytes. The conversion of pyruvate to lactate and thus the formation of NAD molecules 

is significantly reduced and the NADH continues to increase. The exposure to 15 minutes of 10-

20mM lactate in the murine heart was significant to increase the levels of NADH (FIG. 6) and 

thus alter the electrical properties significantly increasing monophasic potential durations in 

wildtype mice with Kvβ1.1 subunit present and capable of sensing to the NADH increase. The 

same experiment in knockout Kvβ1.1 hearts lead to no significant prolongation in monophasic 

action potential after the addition of lactate (FIG. 6). Similar trends were observed in adult 
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isolated cardiomyocytes which underwent lactate exposure; again WT myocytes demonstrated 

prolonged action potential durations at APD20 and APD50 while no increase was noted in KO 

myocytes. This prolongation in both monophasic and cellular action potentials is likely due to 

the Kvβ1.1 subunit sensing the increase in NADH (via lactate) and leading to faster inactivation 

of Kv channels (including Kv4.2 and Kv1.5). One molecular theory is faster inactivation allows 

for less time spent in activation therefore reducing the amount of K
+
 ions leaving the cell thus 

taking addition time for the membrane potential to repolarize resulting in action potential 

prolongation. While lactate could contribute to other metabolic changes addition of sodium 

pyruvate restoring the NAD levels after lactate exposure demonstrated electrical alterations 

(MAP) are rather immediate. After 10 minutes of lactate exposure and significant prolongation, 

pyruvate when added for 10 minutes significantly restored the MAP signal to its initial value 

(FIG. 6G). This experiment demonstrated that the intracellular redox balance between 

NAD/NADH can be sensed by Kvβ1.1 and regulate selective Kv channels.  

Indeed Kvβ1.1 has been demonstrated to bind to multiple Kv channels in this work in particular 

it is the first documentation of Kvβ1.1 interacting with and altering Kv4.2 current. The Kv4.2 

current (Kv4.3 in humans) is one of the key repolarizing currents in cardiac action potentials and 

one of the first voltage-gated potassium channels to be activated which makes it of key 

importance. COS-7 cells transfected with Kv4.2 as well as Kvβ1.1 demonstrated a significant 

hyperpolarizing shift within the inactivation protocol after the introduction of lactate and 

subsequent increase in intracellular NADH. Kv4.2 alone showed no significant alterations with 

the addition of lactate once again demonstrating the importance of Kvβ1.1 to sense NAD/NADH 

alterations. These findings highlight the importance Kvβ1.1 plays during many cardiac diseases 

which can alter the NAD/NADH ratios.  
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 While more research is needed on understanding how the Kvβ1.1 affects the overall 

cardiac repolarization reserve at different physiological states a greater understanding of how 

Kvβ1.1 affects other key organs is also important. Many initial reports have highlighted the 

importance Kvβ’s play within the brain including learning and memory (32, 85, 89). Recently, 

with more and more genetic testing being conducting on large sample sizes a greater 

understanding of genetic mutations is coming into play. Such reports have demonstrated a 

correlation in epilepsy and schizophrenia with the Kvβ subunits (15, 62, 112, 161). Another 

rather important area of research yet to be explored is the role Kvβ1.1 plays in the uterus and 

during pregnancy. Previous research demonstrated that Kvβ1.1 was present in pregnant rats and 

altered concentrations (130). Further this work recently demonstrated that there is a significant 

increase in Kvβ1.1 in females compared with males. Taken together the absence of Kvβ1.1 

during pregnancy could lead to altered uterine electrical activity which could alter overall muscle 

contractions and or overall structure as demonstrated in KO female mice presenting with 

enlarged hearts.  
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